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Abstract

On power transformer structural parts the main design criterion is the limit temperature
rise caused by leakage field due to the high current leads. Previous works found in the
literature focus their results on the consequences of electromagnetic leakage flux in terms
of stray power losses. The calculation of stray losses is, of course, also important to
guarantee the total losses. However, the drawback of such computational proposals is
that the direct measurement of stray losses is not achievable in the vast majority of cases
and, therefore, they are difficult to validate. For this reason, this dissertation proposes
to compute the consequences of leakage flux not only in terms of losses but also in terms
of temperature distribution. The objective is to offer a practical tool to compute the
temperature distribution and to localize the hot spot areas on metallic structural parts
heated by electromagnetic induction.

A three-dimensional methodology for the overheating hazard assessment based on
electromagnetic analytical formulation linked with thermal finite element method is
presented. The proposed methodology is carefully focused on those cases where the
electromagnetic wave penetration depth compared to the big machine dimensions is a key
issue. Thus, stray losses into the thin skin depth penetration can be readily calculated
with the analytical model, based on Poynting’s Vector formulation. Then, the temperature
distribution is computed by means of 3D FE thermal analysis, where the penetration depth
sets the volume thickness where losses are introduced.

Moreover, the material data required for computation might be inaccurate as they
are taken from catalogues or the literature and boundary conditions of heat exchange
are difficult to determine from theory or measurements. An attempt to identify these
parameters by means of multi-objective deterministic and non-deterministic optimization
algorithms is proposed ensuring thus the accuracy of obtained results.

An experimental work is presented, and numerical results are discussed and compared
to measurements. Test are carried out for transformer cover plate and tank wall over
a wide range of currents and varying also other design parameters, i.e. plate thickness,
distance between conductors or including amagnetic material, in order to validate the
computational methodology.

To stress the potentiality of the tool, some practical applications are presented, which
include the overheating analysis on complex 3D structural parts, the design of amagnetic
inserts on three-phase transformer cover plates and the evaluation of the overheating
hazard due to zero sequence flux on tank walls taking into account the influence of the
tertiary stabilizing windings.
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Resumen - Spanish Summary

Metodoloǵıa 3D para el análisis de sobrecalentamiento en elementos
estructurales de transformadores de potencia

Existen un gran número de técnicas de simulación disponibles en electromagnetismo para
asistir al diseño de dispositivos electromagnéticos, en particular, de transformadores de
potencia. Sin embargo, se necesitan satisfacer las necesidades de los clientes cada vez
más exigentes y ser cada vez más competitivos en términos de costes de fabricación, alta
eficiencia, fiabilidad o peso. Además con el desarrollo de nuevas tecnoloǵıas y materiales,
se hace especialmente cŕıtico analizar cada diseño propuesto con el máximo detalle,
para que se puedan conseguir soluciones óptimas. Por tanto, el desarrollo de técnicas
novedosas y métodos emergentes para aplicaciones de simulación multif́ısica hacen que
sea un área de investigación muy amplia y próspera, dentro de la cual se enmarca esta
tesis doctoral.

El trabajo de investigación aqúı presentado, se ha realizado en el marco de ayudas
a la investigación 2009 concedidas por la Universidad de Vigo, dentro del “Programa
espećıfico para la formación predoctoral en áreas con especial dificultad para contratar
doctores”.

Introducción

En máquinas y equipos eléctricos de gran potencia los conductores con intensidades
elevadas que pasan cerca de paredes metálicas o atraviesan las paredes de la carcasa, son
elementos térmicamente peligrosos y fuente adicional de pérdidas. En el caso particular
de los transformadores de potencia, la fiabilidad, los puntos calientes y el mantenimiento
dependen de los efectos térmicos producidos por la distribución del flujo electromagnético.

Los métodos de diseño de las partes activas, el núcleo y los devanados, están bien
establecidos. Por el contrario, el diseño de componentes inactivas como los elementos
estructurales no es tan directo y se requiere un estudio minucioso. El control y la
minimización del sobrecalentamiento en los pasatapas de los transformadores juegan un
papel importante y decisivo en el comportamiento del transformador. Sus consecuencias
más significativas son el ahorro de enerǵıa y reducir el peligro de los apagones, que
causan elevados costes a las distribuidoras y clientes, debido a que los transformadores
son un unos de los elementos más importantes de las redes eléctricas.

This is a PhD thesis summary, written in Spanish to meet requirements from the University of Vigo.



Resumen - Spanish Summary

Por tanto, la predicción y localización de las pérdidas por dispersión y puntos calientes
y sus consecuencias se vuelven una cuestión vital para los fabricantes. Normalmente,
estos efectos se minimizan aumentando la distancia entre los conductores y la pared o
colocando apantallamientos electromagnéticos y en el caso de los pasatapas se utiliza
acero amagnético. Este es un fenómeno muy conocido, pero los fabricantes y diseñadores
cada vez están más sensibilizados con este problema debido a una serie de factores:
el aumento de potencia de los transformadores, elevado coste de los materiales y la
reducción del tamaño del transformador, impuestos por un mercado cada vez más
competitivo.

Motivación

Las referencias encontradas en la literatura centran sus resultados en las consecuencias
del flujo electromagnético de dispersión en términos de pérdidas. Sin embargo, el
inconveniente de esas propuestas es que no es posible la medida directa de la distribución
de pérdidas en la mayoŕıa de los casos, y por tanto son dif́ıciles de validar. Por otro lado,
es una realidad que la temperatura superficial se puede medir y monitorizar fácilmente a
través de sensores disponibles en el mercado.

Aunque el cálculo de pérdidas por dispersión en transformadores de potencia es
también importante para garantizar las pérdidas totales, el incremento de temperatura
local debido a altos valores de densidad de flujo son más importantes. Uno de los
principales factores que influye en el envejecimiento de los transformadores es la
temperatura y la distribución de la densidad de pérdidas puede dar lugar a valores
de temperatura peligrosos si los materiales no se seleccionan de manera adecuada.
Además, el principal criterio de diseño de pasatapas y otros elementos estructurales es el
incremento de temperatura causado por la exposición a campos magnéticos generados por
corrientes elevadas de hasta varios kA. Las normas que se aplican establecen unos valores
de temperatura ĺımite de hasta 140 ◦C para todas las partes metálicas, y comprobar este
requerimiento en los diseños se hace esencial.

En este escenario surge la necesidad de una herramienta práctica capaz de evaluar
la temperatura de manera precisa y establecer criterios claros para identificar el peligro
de sobrecalentamiento en transformadores. Esta herramienta sólo se puede considerar
utilizando un análisis 3D magneto-térmico, donde el cálculo de temperatura permite
verificar indirectamente el cálculo del flujo de dispersión y las pérdidas. Esto resulta de
una gran importancia práctica, puesto que aśı se puede validar la temperatura de manera
experimental y localizar los puntos calientes.

Los problemas que conllevan el uso de materiales magnéticos siempre están
caracterizados por la pequeña profundidad de penetración del campo dentro del metal,
pero además aparecen complicaciones adicionales debido a su caracteŕıstica no lineal y
saturación. Existen paquetes de software comerciales basados en el Método de Elementos
Finitos (MEF), muy utilizados en el mercado, pero en esos casos, incluso los cálculos 2D
se hacen complicados, y requieren gran cantidad de tiempo computacional y memoria.
Esto se debe a que se necesita una discretización muy fina para calcular las pérdidas
dentro de la pequeña profundidad de penetración del flujo electromagnético, que es de
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aproximadamente 1 mm, comparado con las dimensiones de varios metros del volumen
del transformador. Además la solución de problemas 3D de corrientes inducidas con MEF
requiere un conocimiento profundo de la formulación para garantizar las condiciones
de contorno adecuadas, estabilidad de cálculo, minimizar el número de variables o la
habilidad para tratar discontinuidades en las propiedades de los materiales.

Por tanto se puede concluir que los complejos modelos 3D no son adecuados todav́ıa
para implementar en la etapa de diseño de transformadores de potencia ya que el
modelado y resolución demandan mucho tiempo y esfuerzo comparado con los tiempos
de mercado, además de usuarios expertos. Además, si se requieren resultados fiables, se
necesita precisión en el cálculo de las pérdidas y temperatura. Por otro lado, se pueden
obtener fórmulas sencillas a través de métodos anaĺıticos, que permiten un cálculo
más rápido para determinar las pérdidas, y tienen la ventaja de que su resultado se
puede incorporar en otros programas que calculan, por ejemplo, la temperatura resultante.

Objetivos y contribución

Los fabricantes y diseñadores de transformadores requieren métodos de cálculo rápidos,
espećıficos y fáciles de utilizar para acelerar los procesos de diseño. Los métodos de
cálculo anaĺıticos, combinados con datos experimentales u otros métodos proporcionan
modelos eficientes para una representación precisa de determinadas caracteŕısticas del
trasformador. En esta dirección, el trabajo de investigación que se presenta en esta tesis
describe el desarrollo del herramientas de cálculo de pérdidas y temperatura aplicadas al
diseño de pasatapas, tapas y paredes del tanque del transformador.

Otros trabajos que encuentran en la literatura, se refieren al sobrecalentamiento en
elementos estructurales en términos de densidad de pérdidas o intensidad de campo
magnético, que son dif́ıciles de validar experimentalmente. Por el contrario, las
consecuencias del flujo de dispersión en términos de distribución de temperatura son
fáciles de validar y por esta razón la metodoloǵıa propuesta se centra en el cálculo de la
temperatura.

Por tanto, se presenta una metodoloǵıa 3D que combina una formulación anaĺıtica
para el cálculo electromagnético con el análisis térmico por el MEF para evaluar el peligro
de sobrecalentamiento en elementos estructurales de transformadores. Aśı, se solventan
las dificultades del cálculo de pérdidas en la profundidad de penetración, mientas que el
análisis 3D MEF térmico permite comprobar experimentalmente los resultados obtenidos.
Se presentan además una serie de experimentos que permiten validar la metodoloǵıa de
cálculo propuesta, en los que se evalúan los efectos térmicos inducidos en chapas de acero
por conductores de alta intensidad.

La precisión en el cálculo de pérdidas es necesaria para estimar el incremento de
temperatura y diseñar métodos para eliminar y controlar sus efectos más peligrosos.
Por tanto, en este trabajo de investigación se profundiza en la implementación de
una formulación anaĺıtica considerando el comportamiento no lineal de la profundidad
de penetración. Este comportamiento permite un mejor entendimiento del fenómeno
electromagnético y permite además establecer la profundidad del volumen en el que se
localizan las pérdidas en el modelo térmico.
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Por último, un aspecto importante en la metodoloǵıa propuesta es garantizar la
precisión del los resultados para otras condiciones de carga o distinto número de
conductores. Esto se consigue incluyendo un proceso de optimización que identifica
los parámetros de entrada adecuados para los cálculos electromagnético y térmico. La
calibración del modelo se basa en datos experimentales, y se incluye la sensibilidad del
modelo a posibles errores en la medida.

Metodoloǵıa de cálculo

La metodoloǵıa de cálculo propuesta en esta tesis doctoral, empieza con el modelo
anaĺıtico electromagnético que permite calcular las pérdidas debidas al flujo de
dispersión. Después de introducir parámetros geométricos, propiedades de los materiales
y el valor de la fuente de intensidad, se obtiene la representación del campo magnético
aplicando la ley de Biot-Savart. El siguiente paso es el cálculo de la distribución
de pérdidas disipadas debido a la presencia de conductores con corrientes elevadas
integrando la formulación anaĺıtica del teorema de Poynting.

Los aspectos f́ısicos y matemáticos relacionados con el modelo electromagnético se
explican en detalle. Se demuestra como aplicando el Vector Poynting en un modelo
que consta de un conductor con intensidad elevada posicionado cerca de una superficie
metálica permeable se puede calcular cómo la enerǵıa electromagnética fluye en el
sistema, la transferencia de enerǵıa y la disipación de pérdidas en forma de calor.

Se comienza con la formulación de las ecuaciones de onda electromagnéticas
dentro del un conductor, a partir de las ecuaciones de Maxwell. Cuando una onda
electromagnética incide en un metal conductor, se propaga un pequeña distancia que
es la llamada profundidad de penetración δ. Además, a partir de la relación entre los
valores superficiales del campo eléctrico y magnético se define el valor de la impedancia
superficial Zs que tiene valores de Ohmios (Ω).

El teorema de Poynting es el teorema principal de conservación de enerǵıa para campos
electromagnéticos y permite identificar todas las fuentes de enerǵıa en un determinado
volumen. La formulación del Vector Poynting se obtiene a partir de las ecuaciones
de Maxwell e indica la dirección y densidad de potencia en un punto determinado del
sistema. Por tanto es posible representar como se propaga el flujo de enerǵıa en el espacio
a través de ondas electromagnéticas dentro y fuera de los conductores, y como esta se
transforma en pérdidas dentro del conductor.

Por tanto a partir de la formulación del Vector Poynting e integrando en la superficie
a calcular se pueden obtener las pérdidas por dispersión, siendo conocida la distribución
de campo magnético en la superficie del metal. Si se han de tener en cuenta además la
caracteŕıstica no lineal del acero e histéresis, se deben aplicar factores de linealización que
dependen del material y del tipo de superficie estudiada. En esta tesis se explica en detalle
el origen de estos factores, y su interpretación f́ısica. Se destaca el comportamiento no
lineal de la permeabilidad magnética en la superficie del metal y su comportamiento no
lineal dentro del propio metal. También se debe considerar el factor de apantallamiento,
que depende de la relación entre el espesor del metal y la longitud de onda del campo,
que pueden dar lugar a fenómenos de reflexión y consecuente disminución de las pérdidas.
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Por último, se describe la formulación anaĺıtica en términos de impedancia superficial
y profundidad de penetración no lineal. Esta formulación permiten combinar el
comportamiento en la zona lineal y saturación a través de una función de peso que
tiene en cuenta el grado de saturación del material. Aśı es posible introducir de manera
sencilla el comportamiento no lineal y la saturación de materiales ferromagnéticos en el
modelo anaĺıtico.

Se incluye en la descripción de la metodoloǵıa computacional también la formulación
anaĺıtica del campo magnético para los dos tipos de excitación que aparecen en el
transformador: tangencial y normal. La excitación tangencial aparece en la tapa y
pasatapas del transformador, donde los conductores atraviesan la chapa metálica, y la
excitación normal se debe a conductores que pasan paralelos a las paredes del tanque.

Por otro lado, a partir de la solución anaĺıtica, la potencia disipada se introduce dentro
de la región de la impedancia superficial en el modelo térmico, como fuentes de calor.
Además la profundidad de penetración no lineal obtenida a partir de la representación
anaĺıtica permite establecer en el modelo térmico la profundidad exacta de regiones en las
que se ubican dichas fuentes de calor. Aplicando las condiciones de contorno adecuadas
se calcula la distribución de temperatura en régimen estacionario, conectando de esta
manera los dos modelos.

Ensayos de laboratorio

Con el objetivo de ilustrar la capacidad de la metodoloǵıa de cálculo presentada en esta
tesis como una herramienta práctica para el análisis de puntos calientes en elementos
estructurales del transformador se realizan una serie de ensayos experimentales. Este
estudio ha sido realizado gracias a la colaboración de Efacec Enerǵıa S. A. Power
Transformers. Los ensayos están diseñados para determinar las áreas que alcanzan un
mayor incremento de temperatura en chapas de acero utilizadas en pasatapas, tapas y
paredes del tanque, como consecuencia de la presencia de conductores con intensidades
elevadas.

Se toman medidas de temperatura en régimen estacionario en varios tipos de ensayos.
Por un lado se hacen ensayos tipo tapa, en los que una chapa de acero posicionada en
horizontal sobre un soporte es atravesada por uno o varios conductores. Por otro lado
se hacen ensayos tipo pared, en los que uno o varios conductores pasan paralelos a una
chapa de acero colocada en posición vertical. Por último se hacen ensayos en pasatapas
con forma redonda y cuadrada atravesados por un conductor.

Se tienen en cuenta varios parámetros de diseño a la hora de realizar los ensayos, como
la magnitud y fase de la corriente (desde 200 A a 2.5 kA), distancia entre conductores,
la distancia entre los conductores y la chapa de acero, el número de conductores y su
disposición (en vertical u horizontal), el espesor de las chapas de acero y los materiales.

Los ensayos se realizan en aire de manera que se obtiene condiciones de refrigeración
más severas que las que realmente tienen lugar con el aceite del transformador. Pero
una vez que haya validado el método de cálculo las condiciones de contorno se pueden
cambiar por factores correspondientes a condiciones reales.
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Identificación de parámetros de cálculo

Una vez establecida la metodoloǵıa de cálculo se ha encontrado la dificultad de establecer
datos de propiedades de los materiales y condiciones de contorno a partir de catálogos o
en la literatura que sean realmente fiables. En la metodoloǵıa de cálculo propuesta estas
incertidumbres se evitan introduciendo un método de identificación de parámetros, es
decir se calibran los modelos de cálculo. Su objetivo es identificar y ajustar los parámetros
de entrada electromagnéticos y térmicos para la simulación, de manera que los resultados
se ajustan a las mediciones de temperatura tomadas como referencia. Una vez que los
parámetros de entrada han sido identificados, la distribución de temperatura se puede
calcular, por ejemplo, para otros valores de carga o distinto número de conductores. Este
trabajo se ha realizado durante una estancia de investigación en la Universidad de Pavia,
Italia, bajo la supervisión del Prof. Paolo Di Barba, beneficiándonos de su experiencia
en problemas inversos y optimización en electricidad y magnetismo.

Se describe una técnica para la identificación de estos parámetros basada en algoritmos
de optimización mono-objetivo y multi-objetivo. Además se detallan una serie de estudios
claves como la influencia relativa de cada parámetro en la distribución de temperatura
final, o la sensibilidad del modelo a posibles errores introducidos en la medida.

El proceso de solución del problema inverso comienza con la implementación de un
algoritmo de optimización mono-objetivo para identificar los parámetros de entrada
óptimos para la simulación. El siguiente paso es determinar la sensibilidad de dicha
solución. Para ello se introduce una perturbación en los parámetros de entrada del
modelo y se determina cuanto afecta a la salida. Se ha comprobado, que existen
soluciones que son menos sensibles a estas perturbaciones, es decir, menos sensibles
a errores introducidos en la medida. Por tanto este conjunto de soluciones (frente de
Pareto) se identifican a través de algoritmos de optimización multi-objetivo. Se aplican
un algoritmo determińıstico y otro no determińıstico, GATT y NSGA-II respectivamente.
No obstante, existen en la literatura una gran variedad de algoritmos que se pueden
utilizar para automatizar el proceso de calibración.

A través de la optimización multi-objectivo se obtienen una serie de soluciones que
se pueden seleccionar dependiendo de los requerimientos de precisión y sensibilidad
de cada modelo. Además se ha comprobado que con los dos algoritmos se consigue
la identificación de soluciones bien distribuidas en el frente, pero el GATT requiere
más tiempo de cálculo y correr el algoritmo varias veces variando la solución inicial y
discretizando las direcciones de búsqueda para centrarse en la región de interés.

Resultados y conclusiones

Una vez identificados los parámetros de entrada óptimos, se presentan una serie de casos
de estudio para analizar en detalle el comportamiento no lineal en el modelo anaĺıtico. A
través del modelo de profundidad de penetración no lineal que se describe en esta tesis, se
representan resultados de un amplio rango de corrientes destacando el comportamiento
según se trabaje en la zona lineal o de saturación de la curva del acero.

También se presentan una serie de resultados de simulaciones térmicas tanto para
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uno o dos conductores y se validan con medidas obtenidas en forma de termograf́ıas a
través de los ensayos, donde realmente se demuestra el potencial de esta metodoloǵıa.
Se compara la distribución de temperatura entre simulaciones y ensayos a la hora de
evaluar la influencia del espesor de la chapa, y también el uso de materiales amagnéticos.
De esta manera, indirectamente se valida también el cálculo de las pérdidas. Además en
el caso de las paredes del tanque la metodoloǵıa de cálculo se extiende al uso de modelos
en 2D, en los que también se validan los resultados de la distribución de temperatura con
termograf́ıas.

Para destacar la potencialidad de esta herramienta de cálculo, se presentan aplicaciones
prácticas que incluyen el cálculo de temperatura en elementos estructurales 3D más
complejos y que combinan distintos materiales, el diseño de injertos amagnéticos en
tapas planas de tanque de transformadores trifásicos y la evaluación del peligro de
sobrecalentamiento en paredes del tanque debido a la presencia del flujo de secuencia
cero, teniendo en cuenta si el devanado de estabilización está o no conectado.

Futuras ĺıneas de trabajo implicaŕıan el uso de la herramienta de cálculo en el ámbito
industrial, validando casos prácticos, con valores de corriente mucho más elevados, con
distinto número de conductores y distintos desfases.

7





Chapter 1

Introduction

In field simulation there are a large number of techniques available to assist in the
design of electromagnetic devices, and in particular of power transformers. Commercial
software packages offer efficient modeling and modern simulation tools and the vast
literature available on the subject covers various aspects of field simulations in the context
of optimum design and performance prediction of the studied device. Nevertheless,
designers of modern transformers need to satisfy customers and be competitive in terms
e.g. of low manufacturing and operating costs, high efficiency, reliability or minimum
weight. Moreover, new types of technologies and new materials are being developed
and investigated. Thus, it becomes increasingly critical to analyze any proposed design
in considerable detail, so that an optimum solution might be achieved. Emerging
new techniques and methods for multi-physics applications [1], also in the area of
multiobjective optimization [2] make it to be a prosperous area of research.

1.1 Background

In the recent years the power industry is faced with an important challenge to keep
design and development cost at a minimum and at the same time they need to design
power transformers with energy efficient criteria. Methods for design of active parts, core
and windings, are well established. Contrarily the design of inactive components such as
the structural parts, is still not straightforward and requires careful treatment [3].

Losses produced on structural parts of large power transformers are due to both,
leakage flux from windings and high current leads passing near conducting parts of the
tank walls, including also low voltage bushing terminations. In addition, high current
leads passing close to conducting plates and housing walls of large power equipment are
thermally hazardous elements of construction [4]. Therefore, they not only reduce the
efficiency of transformers, but also give rise to local high temperatures, more important
in terms of safety and reliability. Hot spots, reliability and maintenance closely depend
on the thermal effects produced by the distribution of electromagnetic leakage flux [5]
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and they shorten transformers service life [6]. Specially, low voltage bushing terminations
are areas of high risk and hot spots are more likely to develop since the cooling effect
of transformer oil is negligible and eddy current densities are very high. The excessive
overheating in those components could be dangerous at overloading, which is not
uncommon nowadays [5].

The subject of tank wall losses near the low voltage bushings in power and distribution
transformers has received little attention. The minimization and control of the consequent
overheating in bushing plates and other structural parts play a decisive role in transformer
performance. Their significant consequences are energy savings and reduce the risk of
shutdowns. They involve high cost to utilities and customers as transformers are one
of the most expensive components in electric system networks [4]. This means that
the accurate prediction and localization of stray losses and their thermal consequences
become a vital issue for manufacturers. Usually these losses are mitigated by moving the
conductors farther away from the wall [7] or by placing a shield of high conductivity and
low permeability on the tank wall near the high current conductors [8]. In the case of
bushing turrets and tank cover plates, they are usually made of stainless steel [9].

This is a well know phenomenon but manufacturers and designers are nowadays more
concerned about this problem due to the combination of factors: the increasing of power
rating in power transformers, the high cost of materials, and the reduction of the overall
size of the transformer imposed by a more and more competitive market [10]. Efforts
made on efficient design of transformers, not only focus on loss reduction, but also on
manufacturing costs reduction and the present study is part of such effort.

1.2 Motivation

References and previous works found in the literature [11], [12], focus their results on
the consequences of electromagnetic leakage flux in terms of stray power losses [13],
[14]. The drawback found by authors of such computational proposals is that the direct
measurement of stray losses is not achievable in the vast majority of cases, and therefore
they are difficult to validate. Meanwhile it is a fact that the surface temperature can be
easily monitored nowadays by means of temperature sensors available at the market.

Although stray losses computation in large rating transformers is, of course, also
important to guarantee the total losses, the local temperature rise due to high values of
incident flux density is more important. One of the fundamental criteria which influences
the transformer ageing and the degree of loading is the transformers temperature. The
loss density distribution may attain levels leading to hazardous local temperature rise if
the material and design are not selected properly. Besides, the main design criterion of
the bushing adapters in large transformers is the limit of the temperature rise caused
by the exposure of the adapters to the magnetic field generated by high current leads
carrying several kA. The applicable standards used for the design of power transformers
specify a temperature limit of 140 ◦C for all metallic parts of the transformer because
above this temperature gas formation starts developing in the oil, with its consequent
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insulation damage [15], [16]. Many papers are devoted to accurately calculate transformer
oil and windings temperature [17], but only in recent years some attention has been paid
the temperature calculation on structural parts starts [9], [18], [19]. To proof a design
against this requirement becomes essential.

In this scenario, there arises the need for a practical tool capable of assessing the
temperature distribution accurately and establish clear criteria to identify overheating
hazard in transformers. Such tool can be correctly considered only by using a coupled
3D magneto-thermal analysis [20], [21] where the temperature calculation indirectly
permits to verify the underlying leakage field and stray losses calculation. It is of great
practical importance for transformer designers since the temperature can be validated
experimentally and overheated points can be localized.

Problems involving magnetic materials are almost always characterized by small
penetration depths but in addition there are further complications due to the non-linear
material characteristics and saturation of ferromagnetic materials [22], [23], [24]. Any
calculation of the electromagnetic field or losses due to eddy currents in ferromagnetic
bodies is complicated by the fact that the permeability of the material depends on
the magnetic field itself. In such cases, even two dimensional problems could place
unreasonable demands on the computational time and storage.

In the recent years, some authors invested efforts to demonstrate that the 3D
Finite Element Method (FEM) is capable of routinely providing a solution to a large,
complex real-world problem and can hence be incorporated in the design cycle of large
transformers [24], [25], [26], [27]. However, solving a 3D FEM eddy current problem is
not straightforward and requires advanced knowledge on the formulations, particularly
in the case of a multiply connected problems, such as the tank cover. Additionally, from
industrial perspective computing transformer losses on its structural parts from a 3D
model taking into account non-linear material properties and complex geometries is not
the most adequate from a practical point of view due to its non-affordable computational
time. Often authors advise to perform a separate study with different solvers and
formulations to compute stray losses due to windings or high currents leads on certain
structural parts of transformers such are the tank walls and bushing adapters [28].

Thus, it can be concluded that full 3D models are still not suitable to implement on
the design stage of power transformers. Modeling and solving still demand much time
and effort in the scale of a rapid response in market time, and it does require experienced
users. Moreover, for the computation of the stray losses and resulting temperature from
the electromagnetic induction heating, such accurate model must be taken into account
if calculations are to be reliable [28], [29]. On the other hand, simple formulae can be
obtained by means of analytical methods, which provided with a deep experience and
understanding of the phenomenon permit quicker and easier determination of losses.
Their correctness can easily be proved by measurements made on a model, and their
accuracy can be improved by correction factors determined experimentally of from other
empirical data [16]. Analytic methods can not only help one to quickly assess the effect
on losses of e.g. repositioning the bus bars or using shields of different materials, but also
make possible to incorporate such loss calculations in other computer programs which
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calculate, for example, the plate temperature rise resulting from these losses [7].

1.3 Objectives

The complexity of transformer design demands reliable and rigorous solution methods.
Since complicated methods are impractical for day-to-day use, solutions using simpler
methods but giving sufficiently accurate answers are in constant demand by designers.
Transformer developers need rapid, easy to use and specialized software tools for specific
features on transformer analysis to speed up their processes [28]. Such are experimental
methods, combining data provided by measurements with analytical or other methods,
in order to provide efficient models for the accurate representation of certain transformer
characteristics [30].

In this direction, the work presented in this thesis reports the development stray loss
and temperature computation tools applied to the design of transformer tank covers,
bushing adapters and tank walls of power transformers.

References found in the literature refer to overheating and hot spots only in terms of
magnetic field strength or stray loss density distribution. However, in practice stray loss
densities are difficult to measure and those methods might result inaccurate. For that
reason, the temperature computation is the novelty addressed in this research, where the
specific objectives are:

� To present a computational methodology based on an electromagnetic analytical
formulation linked with a 3D FE thermal analysis. Thus, the problems to compute
the stray power losses into the thin skin depth penetration are overcome analytically.
Meanwhile, the 3D FE thermal analysis easily allows checking experimentally the
obtained results.

� To include a non-linear penetration depth formulation for the calculation of stray
loss on magnetic steel components. It provides more insight into non-linear
electromagnetic and thermal behavior. Obtained results also yield an improvement
on the thermal model, allowing to adequately locate the heat sources within the
penetration depth thickness.

� To implement a calibration process to guarantee the accuracy of computed results.
It is done based on measurements and including optimization algorithms which
identify the adequate value of electromagnetic and thermal parameters involved in
the computation. An exhaustive investigation on the influence of parameters and
sensitivity to measurement error is also addressed.

� To validate experimentally the obtained results. A series of experiments are
presented in order to validate the proposed methodology, where the influence of
several design factors on thermal effects caused by high current leads on steel plates
is evaluated.

12
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� To demonstrate the practicality of the proposed computational methodology. Some
practical applications are included proving the development of efficient models
with low computational cost and runtime which provide accurate results and are
suitable to be included in the design stage or large power transformers.

1.4 Outline of the Thesis

This dissertation revolves around the concept of stray losses and its unwanted effects
in terms of temperature rise. The study presented here is based on an analytical
electromagnetic analysis, which allows to evaluate the stray loss densities on various
structural parts of the transformer, and a steady state FE thermal analysis for the
computation of the consequent temperature distribution. The presented work is
structured as follows:

Chapter 2 presents a review of the literature focusing on eddy currents, stray fields
and losses computation methods. The advantages and drawbacks of each of them
when applied to the analysis of power transformers are given. Moreover, an exhaustive
discussion on previous works related the analysis of leakage fields and consequent stray
losses caused by high current leads and windings is presented.

In Chapter 3 a computational methodology for the calculation of the overheating
hazard in transformer tank and low voltage bushing terminations is described. Physical
and mathematical principles in which the electromagnetic analytical formulation is based
are rigorously reported. The FE thermal formulation and computational models are also
described.

Chapter 4 presents an experimental setup for temperature measurements in steel
cover plates, tank walls and bushing turrets of power transformers. The experimental
work presented in this chapter serves on one hand to describe a parameter identification
method and on the other hand to validate the computational results.

In Chapter 5 a parameter identification method is described for best prediction of
temperature distribution in the transformer structural parts. It is done by means of the
implementation of optimization algorithms from which the adequate input parameters
for the simulation are obtained. Sensitivity to measurement error is introduced by means
of multi-objective optimization, where deterministic and non-deterministic algorithms
are used for the sake of comparison. The efficiency of the algorithms and the selection of
the most suitable for the parameter identification problem is reported.

In Chapter 6 computational results from applying the proposed methodology are
discussed. The electromagnetic and thermal non-linear behavior on transformer covers
are analyzed in detail, allowing thus a better understanding and more insight into the
phenomenon an required analysis. Computed temperature distribution is compared with
thermal imaging from measurements where the accuracy of the computational model is
enhanced.

In Chapter 7 practical applications applying the proposed computational methodology
are given, stressing its potentiality on further analysis on structural parts of power
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transformers. Thus, the overheating hazard is evaluated in 3D complex structures,
such is the transformer tank cover with bushing turrets. In addition, a practical tool
is presented for the arrangement of amagnetic inserts in order to control and reduce
the overheating hazard on flat three-phase transformer covers. The methodology is also
applied to evaluate the overheating hazard on transformer tank walls due to zero-sequence
flux with and without tertiary stabilizing winding.

Finally in Chapter 8 overall conclusions and future lines of work are given.
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Literature Survey

The role of eddy currents increases when designing and manufacturing large power
transformers [31]. As transformer ratings increase, the amount of leakage flux traversing
the windings and the air gaps around them increases also. Consequently, wherever the
leakage flux enters magnetic material the flux densities within increase and may cause
significant eddy current and hysteresis losses, i.e. stray losses. Other than the core,
pieces made of magnetic material in a large power transformer are structural parts such
as the core clamps and the tank, which would be made mainly of mild steel.

Stray losses, hot spots, reliability, maintenance, and overloading characteristics of
large power transformers closely depend on suitable distribution of eddy currents and
thermal effects produced by strong leakage fields [32]. In particular losses generated due
to high current leads in the tank wall and the structure surrounding the transformer
bushings can be the cause of hot spots that can damage the transformer oil and could put
the transformer out of service. Hot spots in transformers are one of the most important
parameters that determine their lifetime [6].

The serious failures due to thermal effects of eddy currents on those structural parts
caused the necessity of their careful analysis, and its investigation becomes a fundamental
question for manufacturers and utilities. To ensure proper operation of the system the
most vulnerable points of field concentration and hot spots have to be localized and
minimized. Moreover, due to environmental considerations and rising energy costs,
customers have been putting high requirements on transformer efficiency. Although the
efficiency of a modern transformer lies above 99 %, the loss cost is still significant, and
recent studies focus their effort to further increase efficiency [6]. Accurate estimation
and subsequent reduction of stray losses by shielding techniques as well as the use
of amagnetic materials will give competitive advantages in a increasingly demanding
market.

A great amount of papers are devoted to the application of calculation techniques
for the estimation and control of stray loss in transformers, many of them collected
in the publications [13] and [14] and their references. The investigation of these
problems requires the analysis of eddy currents as an essential subject in the research of
electromagnetic fields for the consequent stray loss computation [33].
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In this work the state of art is focused in two main parts. In one hand a review of
the calculation methods for eddy current analysis and stray loss computational aspects,
and on the other hand, a review of published papers devoted to loss estimation and
minimization on tank walls and cover plates of power transformers.

2.1 Stray Fields and Eddy Currents Calculation

Methods

Aspects about the research in transformer performance, in particular the analysis of
complex design problems that involve electromagnetic fields and stray losses come out
since the 1950’s and still continue [13]. They are related with the electromagnetic leakage
flux estimation methods which have progressed from analytical to numerical methods.
Such methods can in general lead to correct estimation of leakage flux and stray losses
calculation, but their differences are on attributes such as accuracy, ease and practice of
use, time consume of computation, cost and flexibility. Therefore, the use of one method
or other is finally decided by the user, depending on the his experience, means and needs
of each particular problem [5].

Although the analytical methods and two-dimensional modeling of leakage fields and
hot spot localization in transformers is still convenient and useful in some design problems,
it was found insufficient for analysis and computation of three-phase transformers where
the three-dimensional solution of three-phase systems becomes necessary [32]. Various
numerical techniques are available for tackling the electromagnetic field and the stray loss
calculation problem. Numerical techniques can be principally categorized into methods
based on differential formulations (e.g. Finite Difference Method, FDM), integral
formulations (e.g. Boundary Element Method, BEM) and variational formulations (e.g.
Finite Element Method, FEM) as in [33].

There are also hybrid methods, which are combinations of the above mentioned.
Using advanced numerical techniques and coupled formulations, researchers are now able
to analyze complex phenomena in transformers. Ease of modeling complex geometries,
including non-linear behavior of materials, and its solid mathematical basis have lead
to a domination of FEM to be used in engineering applications. The number of papers
and the range of commercial software available are proof of the research carried out in
academic institutions as well as industry [13], [14] and [34]. However, in the case of power
transformers 3D FEM becomes especially difficult to apply. It is because a very fine
mesh is required to compute the stray losses into thin skin depth of flux penetration of
about one millimeter against dimensions of a few meters of the volume of the device [35],
[36], [37]. Additionally, the problems when solving 3D FEM eddy currents are connected
with a proper and adequate mathematical formulation [38].

In spite of the existence of numerous methods only a few of them are commonly
used on eddy current and leakage flux analysis applied to power transformers. An
overview of 2D and 3D eddy current calculation methods is presented in next subsections.

16



Chapter 2. Literature Survey

Practicality of application and dealing with field penetration depth, non-linear behavior
of magnetic material and complex geometries, including multiply-connected regions (i.e.
conductors having a hole) is discussed.

2.1.1 Analytical Methods

Authors are aware of the present situation on which numerical methods are dominant
but suppose that the analytical methods have still some advantages. Many field problems
can be solved by means of the two-dimensional theory, on which the field components
vary only on two directions [15].

Eddy currents and stray losses might be appreciable different depending whether the
material is excited by tangential or normal field. Therefore the analytical equations and
methods derived for the field calculation also differ from each other.

Radial or normal field excitation is the case when the flux enters perpendicular to
a metal surface, e.g. case of current carrying conductors placed parallel to a metal
surface. Some methods are presented based analytical approaches for calculating
the electromagnetic fields in metal sheets in the presence of bus bars carrying heavy
alternating current.
Since any current distribution in space can be looked upon as made up of an infinite
number of sinusoidal distributions with the help of the Fourier integral, the field due to
any current distribution can be calculated. The expression for field intensity is developed
based on the solution of Maxwell’s field equations and superimposition is justified due to
the linear relation between current density and electric field [39]. Assuming sinusoidal
field distribution, the general solution of the field components, either electric or magnetic
field, can be found from field diffusion equations in different media. Applying suitable
boundary conditions of the model, the resultant field can be calculated then at the metal
surface.

The field distribution at the metal surface can be also found by means of the mirror
images method, where in case of ac currents, convenient coefficients have to be applied
[15]. The method of mirror images and the direct application of the Biot-Savart law
is also very convenient for calculation of leakage field due to high current leads placed
parallel to a metal surface. Using this method we can easily substitute the double
medium space by a single one by means of the appropriate coefficients. For instance, a
metal medium can be eliminated from the model and obtain a homogeneous dielectric
environment.

Tangential excitation occurs when a current lead passes through a metal plate, as
in the case of cover plates or bushing turrets on power transformers. In the case of
tangential excitation, the field at the surface can be calculated by the help of Biot-Savart
law [4], which integrating and summing for every current gives the full analytical solution
of the magnetic field.

Thus, the expression for average losses can be developed per unit area of the tank
surface either for radial or tangential excitation. To calculate the loss of the system,
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it is sufficient if one knows the field expression which combined with a concept of
surface impedance leads to the calculation of losses taking place due nearby current
carrying conductors [40]. The concept of surface impedance comes from the formulation
of Poynting’s Vector [15]. Despite being an analytical model, for the calculation of
stray losses on transformers, some relevant parameters can be taken into account with
satisfactory accuracy such as real shape of the tank walls, three-phase excitation,
hysteresis and non-linearity by means of approximation and linearization coefficients [39].

The role of analytical methods and approximated formulae obtained by them is to
put a tool in hands of the designer to facilitate the assessment of loss arising in a given
component. Thus, it is possible to evaluate whether their values are to be considered
hazardous or harmless, and decide in case, which factors have to modify to reduce the
hazard [16]. They might help to quickly assess the effect on losses e.g. of repositioning
the bus bars or using shields of different materials. Moreover, loss calculations from
analytical methods might be incorporated in other computer programs which calculate,
for example, the plate temperature rise resulting from these losses [7].

2.1.2 RNM- Reluctance Network Method

The Reluctance Network Method (RNM) model is based on the network of reluctances
in its electromagnetic part and on the modified nodal analysis in the electric network
calculations. The input data for the calculation are constructional geometry and electrical
parameters of a transformer, from which the values of the network elements (reluctances)
are calculated. There are two principal kinds of elements in the reluctance network, i.e.
magnetic resistances for non conductive areas, and magnetic impedances for conductive
areas. The first ones are calculated from pure geometry of each spatial element described
by its coordinates, and the latter ones take into account analytically the skin effect, eddy
current reactions with phase shift, non-linear permeability inside solid metals, depth of
field penetration, and screening effects [32], [41].

The proper values of these elements are placed into the network scheme, either 2D
or 3D, along with voltage sources which model an elementary magnetomotive force in a
winding. All network elements are calculated on the basis of analytical formulas prior to
the network solution.

The RNM appears to be one of the most appropriate methods for three-dimensional
modeling of leakage fields in three-phase power transformers, when taking into account
its possibility to fulfill the principal practical attributes, i.e. ease of implementation on
moderately sized computers, yielding useful design data, low computational cost and
the possibility to consider multiply-connected problems [42], three-dimensionality and
three-phase systems [32] or non-linear permeability [43].

A novel formulation combining a Reluctance and a Resistance Network (RRN) has
been recently applied to inducted currents analysis in multiply connected conductors
[44]. As the classical A-T formulation in terms of magnetic and electric vector
potentials of the RRN is not capable of treating multiply connected regions with
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solid conductors, authors complement the formulation by introducing supplementary
equations T0 representing the induced current distribution in the region around the holes.

2.1.3 IEM - Integral Equation Method

The Integral Equation Method (IEM) has been used to solve eddy current problems from
the 70’s [45]. The conducting material is represented by a network of current carrying
line elements. Consequently, Maxwell’s field equations can be replaced by Kirchhoff’s
circuit rules. The loop equations for voltages, supplemented by the node equations for
the currents, comprise a set of linear equations that can be solved repeatedly to give the
time development of the eddy currents. A network of mesh lines is used to represent
the conductor. For each node, Kirchhoff’s node rule holds, ie. the algebraic sum of the
currents into each node is zero. Also for each loop, Kirchhoff’s loop rule holds, ie. the
sum of the IR voltage drops around each loop equals the EMF of that loop. In this case
the emf is due to the change in applied flux through the loop plus the change in the
flux due to all line currents. The flux through the loop due to currents can be calculated
based on the approximation that the flux through loop equals the area times the field
at the centroid of loop [45]. The equation of the EMF entering the loop involve time
derivatives of the current, approximated as the ratio of the current difference to the time
step. For multiply-connected conductors, each loop equation must be written for each
hole. If the holes are large, a better approximation for the flux through the holes might
be required.

This method treats the eddy current directly as an unknown value. Current values,
magnetic fields, and power can be also calculated at each time step. The integral
equation approach, which has been first applied successfully magnetostatic problems,
seems especially applicable to eddy current problems. Two-dimensional IEM using scalar
and vector potentials have been reported in [46]. The IEM overcomes the difficulties
arising from modeling such as to treat disjoint bodies without having to include the space
between and around them in the calculation or complicated boundary conditions [45].

In the 3D domain, to calculate eddy current on multiply connected magnetic
materials, the frequency domain volumetric integral method has been reported in [47].
The frequency domain method is adopted to avoid the instabilities which occur in time
integration. The saturation effect of the permeability has been also included successfully
into the volume integral equation method in order to analyze non-linear eddy current
problems [48].

2.1.4 BEM- Boundary Element Method

The Boundary Element Method (BEM) has been suggested at the beginning of 80’s to
be used in stationary eddy current calculations. It appeared that due to the nature of
BEM it is just well-suited to solve eddy current problems. In the BEM only the boundary
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is considered, so the eddy current distribution within the domain of interest does not
influence at all the boundary mesh. Hence the depth of penetration can be arbitrarily
small. The features of the BEM are specially seen when dealing with transient problems.
It is due to the fact that time is analytically included in the fundamental solution. Also
due to its partially analytical nature the BEM gives the possibility of calculating the eddy
currents directly while other methods require the differentiation of the magnetic vector
potential [33].

The BEM, formulated in terms of magnetic vector potential and electric scalar
potential, can be successfully applied to three dimensional, multiply connected and open
boundary problems [49]. It is assumed that exciting currents vary sinusoidally with time.
Boundary integral equations are expressed by means of the vector Green’s theorem for
magnetic vector potential A and the Green’s theorem for electric scalar potential V in
conducting and non conducting regions.

The BEM is specially advantageous in the open boundary problems, which are solved
by means of just one method without adopting any artificial boundary conditions as to
the external regions. Nevertheless, this leads to a high computational cost due the full
non-symmetric matrix to be inverted and the elementary functions to be computed many
times.

2.1.5 FEM- Finite Element Method

One of the effective and widely used methods of numerically computing eddy current
fields in two and three dimensions is the Finite Element Method (FEM). Considering
first 2D problems, since the early 70’s the FEM successfully replace the FDM, which
had been employed in the past. Initially they were static fields which had been solved
by means of FEM. Later the method was employed to the linear harmonic eddy current
problem, and after years became possible to analyze transient non-linear problems [50].
But the great hope researches put in the FEM has not fulfilled in the eddy current
problems. It is nature of eddy currents that makes the calculation somehow cumbersome.
The main problem occurs in the mesh generation starting from the fact that one must
know a priori where the skin effect occurs to provide an appropriate mesh, with several
elements within the skin depth [33].

Moreover, the problems when solving 3D FEM eddy currents are connected with a
proper and adequate mathematical formulation. There exist various formulations in
which these problems are stated but the main question is how to ensure all the interface
conditions and dealing with multiply-connected regions, the uniqueness of the solution
and the minimization of the number of variables.

One of the crucial points is the appropriate selection of the potentials in terms of
which the field quantities are formulated. In 3D eddy current problems, both the electric
and the magnetic field must be described in conductors while in eddy current-free regions
it suffices to take into account the magnetic field only. These fields can be derived
from potentials in various ways leading to various FEM formulations. The requirements
for a satisfactory formulation include, among others, numerical stability insensitive
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to frequency as well as the ability to treat discontinuities in material properties. An
excellent survey on the formulations dealing with those aspects is given by [38], focusing
on multiply-connected 3D eddy current problems. The requirement of numerical stability
demands formulations involving unique potentials. The uniqueness of a vector potential
describing a uniquely defined field can be ensured by fixing its divergence and its normal
or tangential component on the boundary, a procedure called gauging, with the Coulomb
gauge emerging as the most appropriate one [51]. For the calculation of transient eddy
currents in non linear media, fast and simple iterative techniques are used to solve the
non-linear algebraic equations arising [52].

Several finite element formulations in terms of various potentials are reviewed and
summarized in the following paragraphs. However, solving a 3D FEM eddy current
problem is not straightforward and requires advanced knowledge on the formulations,
particularly in the case of multiply-connected problems.

Ar, V −Ar Formulation

The simpler formulation capable of treating eddy current problems with multiply
connected conductors uses a magnetic vector potential A overall supplemented by an
electric scalar potential V in the conductor. To avoid the modeling of the coil structure, a
reduced magnetic vector potential Ar can be used, where the vector potential due to the
current sources is computed using Biot-Savart Law [38]. At the far boundaries Dirichlet
boundary conditions are given for the tangential components of A, which are set to zero,
but no Dirichlet boundary conditions can be given for V . Moreover, on the interfaces
between ferromagnetic and non ferromagnetic regions, the normal component of the Ar

should be allowed to be discontinuous in order to improve the accuracy of computation
[52]. It has the advantage that no cutting is necessary for the multiply-connected region
problem but the great disadvantage of the present formulation is the use of a vector
potential involving three degrees of freedom to describe the static magnetic fields outside
the conductor.

A, V −A− Φ Formulation

Scalar potential functions involve only one degree of freedom per node in their formulation
but are not completely adequate for three-dimensional representation of current regions.
Thus, by combining the previous formulation with the magnetic scalar potential Φ
outside the conductor, it is possible to reduce the computational effort. However, in case
of multiply connected conductors, Φ cannot be used everywhere in regions free of eddy
currents. Indeed, this would enforce zero net current around the hole in the plate which
is clearly wrong [38]. To overcome this difficulty, a magnetic vector potential A can be
used in the hole, leaving the surround domain with Φ. Therefore a boundary condition
is set by the prescription of the normal component of A to vanish on the interface
between the A or A, V and the Φ regions, but if this surface coincides with an iron-air
interface, poor accuracy might result [52]. The second necessary Dirichlet boundary
condition is the setting of Φ to zero at the far boundaries, provided these boundaries are
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far enough. Similarly to the A, V −A version, no Dirichlet boundary conditions specify
the electric scalar potential V [38] and the fact that on the present problem, the only
boundary conditions on V are of Neumann type constitutes a difficulty for the above two
formulations involving the electric scalar potential, i.e. ill conditioned systems might
result.

T,Φ− Φ Formulation

The use of the electric scalar potential can be avoided by employing an electric vector
potential T. The formulation in terms of the electric current vector potential T and the
magnetic scalar potential Φ in the conductor is one of the most efficient formulation for
the solution of eddy-current problems [53]. The major advantage of the formulation is the
use of the magnetic scalar potential in non-conducting region, which enables considerable
savings of the number of unknowns. However, in the case of conductors containing holes,
it is well known that the non-conducting region is multiply-connected and the scalar
potential is multivalued. To preserve Ampere’s theorem, cuts through the conductor to
the holes that make the non-conducting region simply-connected have to be introduced
and jump of scalar potential through the cuts has to be allowed [54]. To avoid the
troublesome generation of cuts, the most commonly used method consists of filling the
holes by fake conductors of very low conductivity, but often ill-conditioned systems result
if the conductivity value is not chosen adequately. However, identification of holes in the
conducting region is not an easy task for complicate geometries. Automatic algorithm
for cuts has been presented recently in [55].

T,Φ− A− Φ Formulation

A further possibility to use the electric vector potential in multiply connected conductors
is to introduce a magnetic vector potential A in the hole with T,Φ in the conductor and
Φ elsewhere [38], avoiding thus the generation of magnetic cuts through the conductor.
Similarly to the T,Φ − Φ formulation Dirichlet boundary conditions are prescribed for
each of the potentials. Φ is set to zero at the far boundaries, the tangential components of
T are zero on the interface between the T,Φ and the Φ region, the normal component of
T is zero on the interface between the T,Φ and the A region, and the normal component
of A vanishes on the interface between A and Φ regions. This formulation seems difficult
to apply when solving a 3D eddy current problem as requires advanced knowledge on the
formulations [38], however has been demonstrated to be the optimal for the solution of
the present problem, as shown compared to experiment results from TEAM problem no.
7, asymmetrical conductor with a hole [56].

Ar,T−Ar Formulation

A formulation to compute eddy currents with the aid of a magnetic vector potential
A to describe the magnetic field everywhere and an electric current vector potential T
to represent the eddy currents in conducting regions is reported in [57], taking care of
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multiply-connected regions. To obtain the uniqueness of the vector potentials in case
of the mostly used nodal elements and to gain a better convergence behavior of the
system matrix, the Coulomb Gauge is employed leading to a lack of accuracy in the
solution. Therefore and because continuous nodal elements lead to numerical problems
on interfaces between regions with different permeabilities, edge elements are often
employed for the vector potentials to obtain a better accuracy of the field solution than
nodal elements without free normal components [58]. Moreover, the Coulomb Gauge on
the vector potentials is enforced in the equations itself leading to a system with very
good convergence behavior.

The 3D FEM, which started gaining importance in the 80’s is being constantly
upgraded to improve its modeling capabilities and accuracy for eddy current analysis,
however the efforts required for 3D modeling may be justified only for large power
transformers where improvement in accuracy will be appreciable.

2.2 Stray Loss Calculation into Thin Penetration

Depth. Surface Impedance

Although improved numerical techniques have been developed for the computation of
the stay field in transformers, some authors come up concerning with the difficulty of
computing stray losses in metal structural parts due to the thin skin depth penetration.

The increases in rating of large power transformers have demanded more accurate and
efficient methods of predicting leakage fields, and the consequent eddy current losses [35].
Thus there has been a great deal done with FEM analysis of three-dimensional eddy
current field as seen above. In most of these investigations only model problems were
taken to verify the methods presented. But a more complicated and troublesome problem
is using the method for practical power devices [36]. In this sense, some authors develop
hybrid formulations in order to calculate leakage fields in large power transformers and
associated losses.

Firstly, Djurovic et al. in 1975 [35] proposed a three-dimensional method for calculating
currents induced in leg plates and other conducting parts in which edge effects are
important by coupling the FEM with a finite difference network.
In 1985 Fawzi et al. [23] analyze the use of an Impedance Boundary Condition (IBC)
for the reduction of the field problem encountered in the computation of eddy currents
in conductors with small penetration depths. The formulation of an approximate IBC
problem in terms of boundary integral equations is developed for two-dimensional and
three-dimensional linear problems. The use of the IBC for such problems offers an
approximate but efficient formulation, however the real importance of IBCs is in their
potential adaptation for numerical methods such as finite differences, finite elements and
boundary methods.

The concept of Surface Impedance (SI), which comes up based on the Poynting’s Vector
formulation, was firstly introduced into field theory by Schelkunoff in 1938. At the surface
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of good conductors the tangential component of the electric field E is approximately
proportional to the tangential component of magnetic field H and thus

Z =
E

H
= (1 + j)

1

σδ
, (2.1)

being Z the complex surface impedance and δ the skin depth in a conductor defined as

δ =

√
2

ωµσ
. (2.2)

Where ω is the angular frequency, σ is the electrical conductivity and µ is the magnetic
permeability of the material.

In 1987 Dexin et al. [36] presented a 3D FEM analysis using the complex magnetic
vector potential for the eddy current problem to a three phase power transformer. He
combined the 3D FEM with an analytical formulation in the tank wall and other thin
structural parts where an adequate discretization becomes a problem because of thin
skin depth. Numerical results using the proposed method have been validated with
experimental values giving good agreement.

Holland et al. in 1992 [37] proposed a method for calculating eddy losses in thick
conducting materials. The concept of SI is used in a finite element software package and
applied to the design of large power transformers. The solver permits to calculate stray
fields from windings using a 3D FEM formulation and the consequent stray losses in
the tank wall by means of the SI, removing the need for complex layers of elements to
account for skin effects which reduces the complexity and size of models. A three-phase
transformer in a mild steel tank with magnetic shunts is modeled. Non-linearity in the
tank wall is accounted for by the application of Agarwal’s approximation which considers
the real BH characteristic lies between a linear and a step function, detailed in [59].
Many commercial FEM softwares have now the feature of this SI element modeling and
thus permit designers to calculate tank losses efficiently and accurately.

In 2000 Higuchi et al. [60] developed a technique to estimate the stray loss distribution
in transformers based on the IEM with SI model. This method overcomes the difficulties
of mesh generation in FEM but the integral methods can require much memory.

From the physical point of view it can be stated from the above proposals that
stray losses are a 3D phenomena and its numerical formulation strongly depends on the
problem to solve, which often involves an additional difficulty to tackle. Even in the
era of three-dimensional calculations, two-dimensional methods can be useful for stray
loss calculations in some cases, or to study individual components, but not to consider
the complex systems. Many commercial FEM softwares have now the feature of this
SI element modeling combined with the FE, which permits designers the calculation of
stray losses in large power transformers.

24



Chapter 2. Literature Survey

2.3 Stray Losses in Transformer Structural Parts

Stray losses include eddy and circulating current loss in windings, losses in flitch plate,
core edge loss, loss due to high current fields, and frame and tank losses. Although stray
losses in large rating transformers might not form a significant part of the total losses
of a transformer, a small reduction in losses produce significant energy savings since the
number of transformers in the power systems is high [13], which would benefit utilities
and customers. In addition, the loss density due to high values of incident flux density
may attain levels that may lead to hazardous local temperature rise if the material and
design are not selected properly.

In general, high values of incident flux density in transformer components arise due to
high current leads carrying several kA located nearby those metal components. Within
the most hazardous components withstanding local overheating and hot spots due to
high current fields are the transformer structural parts. The following review of papers
is focused on aspects and findings related to the transformer stray loss problem from the
point of view of calculation, reduction and measurement on the transformer tank walls
and cover plates.

2.3.1 Stray Losses due to Normal Excitation Field from High
Current Leads

Earlier studies and methods are concerned with calculation of losses due to normal
excitation fields which are caused by current carrying conductors passing parallel to
metal plates. A report of highly referenced papers in the subject of stray loss estimation
in transformer tank walls is given below, reporting mainly experimental and analytical
formulae, and providing means reduction and control.

There are several studies related to a single-current carrying conductor in the presence
of conducting permeable surfaces. The problem of determining the behavior of magnetic
flux within solid material of high permeability is a difficult one unless some simplifying
assumptions are made.

In 1923 Rosenberg [61] developed a method where he determines the depth of
penetration of the flux into the iron and the losses in iron caused by the circulating eddy
currents. Rosenberg made the assumption that the flux density is uniform from the
surface to a certain depth decreasing then rapidly to zero, and the magnetizing forces
used are of sufficient magnitude to saturate the magnetic material at the surface.

In 1954, Vogel and Adolphson [62] proposed an analytical expression to determine
stray losses and heating of tanks for a core-type transformer caused by radial field when
the penetration depth is known. Eddy current losses in solid magnetic materials were
found to vary directly with the square root of the resistivity for thick plates and to vary
inversely with the resistivity for thin plates. It is found in this work that losses are not
a function of the thickness of the tank wall for the usual magnetizing forces involved.
An oval-shaped tank is considered in this article, and the losses in the tank wall versus
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the distance for the top of the high-voltage coils are determined. The method for loss
estimation is indirectly validated from temperature hottest spot measurements in a
transformer tank.

In 1954 Poritsky and Jerrard [63] discussed the eddy-current losses in a semi-infinite
solid slab subject to an alternating current solving Maxwell’s by applying Fourier integral
superposition in air and solid conductor. Real cases involve plates of finite thickness,
however, in the case of tank walls the thickness is greater than the penetration depth at
power frequencies acting thus as a semi-infinite plate.

Experimental methods were used by Deuring [64] in 1957, on which he experimentally
dealt with a single current carrying conductor placed near conducting permeable surface
of typical steel of transformer tank plate material. The author presented empirical
equations to calculate losses establishing the correlation between current and conductor
to place distances and determined curves of watts per foot for shielded and unshielded
plates.

In 1959, Agarwal [59] developed formulas for the calculation of eddy currents in solid
and laminated iron. He very clearly explained what occurs when the depth of penetration
is less than or greater than the half-thickness of the plate. The author used Maxwell’s
equations and assumed an ideal (rectangular) magnetization curve in order to obtain
the losses per unit of area in saturating material. Agarwal compared experimental and
computed values of eddy current losses for different lamination thickness.

In 1970 Jain et al. [40] evaluated field pattern and eddy current losses in aluminum
sheet due to current carrying strip bus bars. Current distribution is expressed as made
of an infinite number of sinusoidal distributions with the help of Fourier integral, and
then the field due to any current distribution is obtained by superimposition of fields
due to sinusoidal components. He developed formulae to calculate the loss of the system
with known peak value of the field strength of the source. Both strip and conductor are
assumed to be of infinite length to avoid the consideration of end effects for which the
mathematical formulation is involved. Various curves for loss are given, which are of
practical use.

In 1972, Kozlowski and Turowski [65] presented an analytical formula to determine the
power losses for the adequate selection of the type and thickness of tanks. They assessed
the maximum power above which shielding is indispensable. When non magnetic shields
are applied, unshielded tank losses should be multiplied by an analytical coefficient,
which depends on the copper or aluminum conductivity, the steel parameters, and
the shield thickness. The authors determined optimum copper and aluminum shield
thickness so that minimum losses appear in the tank. When magnetic shunts are applied,
unshielded tank losses should be multiplied by an empirical coefficient, which depends
on the number of sheets that compose the thickness of the shunt.

Krakowski et al. [66] have presented a method for analyzing the electromagnetic
field in a system that comprises of parallel current carrying bars placed above a steel
wall. The current density within the cross-section of bars is computed using the integral
equation technique. The components of the magnetic and electric field strength at the
surface of the wall are evaluated.
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Turowski in his relevant book [15] presented a method for calculation of eddy current
losses in transformer structural parts based on Poynting’s theorem. Turowski’s equation
for eddy losses power dissipated in metal wall applies linearization coefficients to take into
account non-linear magnetic permeability from known distribution of the magnetic field
at the metal surface. His formula was widely applied in several works in the literature
e.g. [67], where the magnetic field distribution can be calculated by several methods
either analytical or numerical.

Koppikar et al. in 1997 [68] in their work give the formula for complex power loss
computation in a steel plate by integrating the Poynting’s Vector over the metal surface.
They provide the analytical solution of the field for a single line current which can be
also superimposed for three-phase system. They calculated eddy current loss for several
current values on a system consisting of a current conductor placed parallel to mild steel
plate, and verified the theoretical results by means of a laboratory experiment as well as
by FEM computation.

In 2003 Del Vecchio [7] presented an analytical method for the calculation of
eddy-current losses in a conducting plate due to a collection of bus bars carrying currents
of different magnitudes and phases. Although these losses in the wall or shield can be
calculated by modern finite element codes, an analytical method would obtain these
losses quickly during the design phase. He developed a formula for the calculation stray
losses in transformer tank walls to several configurations of rectangular bus bars.

2.3.2 Tank Losses due to Windings Leakage Flux

It can be seen that most of the earlier papers published have concentrated on analytical
methods, which due to some assumptions and approximations, are useful to only simplified
2D geometries and cannot be applied to complex 3D structures. With improvements
numerical methods and in 3D software capabilities, now such complicated structures can
be easily simulated and analyzed and accounting of certain 3D phenomena can be closely
approximated. Therefore, numerical methods applied to the calculation of stay losses in
structural parts of power transformers do not concern anymore to the leakage field caused
by a single conductor, or collection high current leads, but to the leakage field caused
by the transformer windings. A high number of papers concerning the stray losses the
transformer tank due to windings is found in the literature, given in this section.

A good physical understanding of the eddy loss generation in massive iron pieces allows
the definition of simplifying assumptions for their calculation. Thus Sironi in 1978 [69]
proposed a quasi three-dimensional computation of eddy current losses in transformer
tank wall from two-dimensional flux calculations in several main planes solved by the
method of images. Important aspects such as the non-linear BH characteristic, and skin
depth penetration are recalled in this paper.

In 1980, Valkovic [39] presented an analytical method for the calculation of stray
losses in three-phase three-legged core type transformer tanks. The author assumed in
this calculation that the thickness of the tank wall is several times greater than the
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penetration depth, and non-linearity and hysteresis were taken into account. Tank losses
were calculated by means of Poynting’s theorem, taking into account the curvature of the
winding and real shape of the tank. A computational model based on the RNM is proposed
by [32] for the assessment of a three-dimensional leakage field distribution and hot-spot
localization in three-phase power transformers. The Reluctance Network Method has also
been applied for analysis of transformers using a hybrid analytical-numerical approach.

In 1993, Pavlik et al. [70] calculated stray losses in the tank walls of core type
transformers using a two-dimensional finite element model and some projection planes
to approximate 3D fields. With the FE programs solutions of much more complicated
geometries can be obtained, an accounting of certain 3D phenomena can be closely
approximated. The stray and eddy losses in transformers can be analyzed thus as a
complete system and not on an individual components. The authors presented a series
of stray loss reduction studies, leading to changes of structural elements that affect the
stray and eddy current losses.

Also in 1993, Guerin et al. [71] dealt with the 3D electromagnetic modeling of eddy
current losses in transformer tanks. In this work, a single-phase, 390 kVA transformer
was modeled. Mesh problems are found when the skin depth is small in relation to
the dimensions of the solid conducting regions. This occurs when the permeability, the
conductivity, or the frequency are high. The authors made several parametric analyses,
changing the relative permeability of the tank, the tank thickness, and the relative
permeability of the magnetic core. In every case, they determined the eddy-current losses.

In 1994, Yongbin et al. [72] applied the T − Φ method to the computation of the
three-dimensional eddy current field in a 360 MVA/500 kV large power transformer, the
structure of which is complicated. The magnetic flux density and eddy current losses in
the cases of tank wall with magnetic shunt, aluminium screen and without any shield are
analyzed and the optimal size, material and structure of tank shield are suggested. Due
to the variety of medium and the complexity of the structure, it needs a lot of storage
capacity and CPU time to compute the eddy current field.

In 1996 Renyuan et al. [73] calculated the eddy current field in large power transformers
due to windings and including heavy current leads which had ignored in previous models.
High current leads play an important role in this problem and their resultant magnetic
field must be taken into account. Based on the numerical solution of eddy current fields,
the local overheating problem in metallic structural parts are studied.

A large list of papers given in [13] report 2D and 3D methods to determine the
eddy-current density and the tank flux distribution in power transformers and describe
the main techniques to reduce stray losses and local overheating in the tank wall caused
by windings and heavy current leads. Many of them evaluate the influence of shields
material and represented the maximum density as a function of the thickness, position,
and distance from the windings.
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2.3.3 Stray Losses due to Tangential Excitation Field from High
Current Leads

Tank cover plates and bushing turrets represent a particular case of the transformer tank
in the calculation of stray losses, due to the incident field is in this case tangential to
the steel surface. High current lead pass through a steel tank cover plate and bushing
box of power transformers creating a three-dimensional leakage field which cannot be
simplified to a two-dimensional problem. Means of preventing the local overheating on
the structure surrounding the distribution transformer bushings are very scarce and very
few solutions of this particular problem are proposed so far.

In 1981, Saito et al. [74] experimentally analyze eddy currents in the structure that
surrounds the large current bushings of transformers. The three-phase bushing model
is made of stainless steel with conducting currents of about 20 kA. Eddy currents
and temperature are measured on a series of experiments from each of the components
separately and considering also the bushing system as a whole (bushing pocket, base
plate, bus cover and isolated phase bus enclosure). Means to prevent overheating
are applied as the use of stainless steel on the base plate, or inner copper shield on
the bushing pocket. Therefore there is no possibility that leakage flux causes local
overheating: the magnetic density in the tank cover and is less than 0.001 T, and the
maximum temperature rise is 16 ◦C. A 2D formulation based on some approximations
and experimental data was used to estimate the eddy current patterns for various
configurations of terminations.

In 1990, Renyuan et al. [75] presented an IEM to determine stray losses produced by
a heavy current in transformer leads. In the case of the tank cover, which is usually made
of amagnetic steel, the region to be solved is open and boundary conditions difficult to
determine. The main advantage of the IEM is that boundary conditions are taken into
account inherently by the mathematical model. The method is applied to calculate the
sinusoidal eddy current field in three dimensions and evaluates the influence of tank
materials, distribution of leads, source current and shields.

The BEM was applied in 1992 by the same authors in [49] to localize the maximum
values of the magnetic flux density occurring in the low voltage bushing from a
three-phase transformer. In this case the transformer consists of three single-phase
transformers and lot of low-voltage leads connecting them are arranged in the lead box
with three holes in the front wall. The magnetic flux density and eddy current losses in
the cases of tank wall with magnetic shunt, aluminium screen and without any shield, are
analyzed. Finally, a range of optimal size parameters such as the distance between holes,
material and structure of tank shield are suggested as corrective measures to reduce
the eddy current losses. In 1994 [76] they use an improved BEM increasing numerical
accuracy for calculating eddy currents distribution and stray loss density on the surface
of a transformer tank cover and bushings. From the results authors give permissible lead
current and limiting distance between high current leads and metallic parts.

Analysis of eddy current pattern, in a three dimensional model of a 40 MVA furnace
transformer Low Voltage (LV) lead termination, is reported by Koppikar et al. in 1997
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[68]. The current carried by the LV conductors was 56 kA, and the lead termination
bushing made of non magnetic stainless steel. The results clearly point out the hot spot
locations that are observed in tests. Total eddy losses estimated are found to be in close
agreement with that observed during load test, and an improved construction geometry
was proposed for the LV termination bushing in order to reduce the transformer load
losses.

In 1997, Turowski and Pelikant in [12] and later in 1998 [4] applied a computer
analysis based on Maxwell’s equations and Biot-Savart law for field computation of heavy
current leads passing through steel cover plates. The stray losses are then calculated from
the numerical integration of the Poynting’s Vector. They developed a formula for the
maximum permissible bushing current in a flat cover. The results given in these papers
provide practical information and various constructional means for the optimization
of the cover structure for loss and hot spot reduction taking into account materials,
geometry excitation currents, iron saturation, skin effect and local overheating.

In 1999, Kim et al. [77] presented an improved design of cover plates to reduce
the stray loss distribution due to heavy currents passing through the steel cover plates
of a transformer. Authors applied an indirect boundary integral equation method
to the problem of heavy currents in transformer leads and compared calculated and
experimental results. An improved design of cover plates to reduce eddy-current losses
was presented consisting of two slits between the holes of the current leads.

From the most recent works, in 2004 Kulkarni et al. [11] calculated the eddy current
losses in bushing mounting plates using both an analytical formulation and a 3D FEM
from a small laboratory model. Authors proved there is a close agreement between
those methods and the losses indirectly calculated from the experimental measurement
of the temperature rise. Authors also analyzed tank plates of small pad-mounted
distribution transformers verified with experiments. The analysis has resulted in a
detailed understanding of the loss pattern and the temperature rise phenomenon in those
structures and found out in [78] by means of 3D FEM that T-shaped non magnetic
stainless steel inserts as the most cost-effective solution for the tank plates in order
to reduce the load loss. In [79] authors proved that a 2D FEM model could be useful
to estimate the percent of loss reduction by comparing models with and without
non-magnetic inserts, stressing however that the 2D FEM underestimates by several
orders the computed loss values.

Also in 2004 Turowski [5] presented an analytical but more accurate analysis since
newer constructions present complex high current bushing turret made of solid iron and
also screened iron. He considered in the whole structure the bushing box, steel walls,
cover of tank and copper screens. The analysis of each of the individual components has
its specific dimensions, materials, theory and physical parameters, dependence on thermal
and magnetic non-linearity, eddy current reaction, approximations and simplifications.
However, all of them are interdependent from each other. The average temperature
rise of walls and cover, as well as the highest temperature rise are estimated from very
simplified calculations.

In 2011 Olivares et al. [80] presented a techno-economic evaluation of reduction
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of low-voltage bushings diameter in single-phase distribution transformers. Mexican
bushing manufacturers reduced the diameter of low-voltage bushings used in distribution
transformers to reduce manufacturing costs but not evaluating the impact of this change
in load losses. The main contribution of this work is the evaluation of such losses by
means FE simulations of LV bushings of transformers, where the SI boundary condition
was used in the simulations.

Although the eddy current losses due to high current leads are negligible as compared
to other losses of transformers, the loss density and consequent local temperature rise,
are considerable affecting the reliability of transformers.

Within the most extended flux estimation methods used by manufactures and
designers is the FEM and studies found in the literature based on the FEM focus on flux
estimation caused by windings. However high current leads play an important role in the
local overheating problem, and some of the mentioned theoretical or practical researches
present a separate study to take their effect into account.

The subject of tank-wall losses and particularly near the cover or low voltage bushing
mounting plates in power transformers has received little attention, and authors observed
that work needs to be done for improvement of geometry of tank wall surrounding the
high current bushings [78]. Very recent studies reported in the literature for analyzing
losses in high current terminations are predominantly for distribution transformers [78],
[11]. In the design large power transformers, very high current values flow through
the LV leads and due to the lack of awareness in the matter of stray loss calculation
the whole structure surrounding the bushings is made of non magnetic stainless steel.
Non magnetic steel is by several times more costly than mild steel increasing thus the
manufacturing cost of the transformer.

The contribution of this dissertation is to provide more insight into the phenomena of
stray losses in structural parts of transformers, focusing on the 3D cover plate problem.
Thus, from a better understanding of the non-linear electromagnetic and thermal
behavior provide means for an improved, optimum and cost-effective design of those
structural parts. The work presented here covers also the lack found in the literature of
studies regarding thermal analysis, which in fact represent the real hazard created by the
high current leads.
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Computational Methodology

The 3D methodology proposed in this dissertation is aimed to assess the overheating
hazard on transformer structural parts. The novelty lies in that its computational
procedure is based on a link between an analytical formulation with the finite element
method. In this way, stray losses into the thin field penetration depth can be readily
calculated with the analytical model and then the temperature distribution is computed
by means of a 3D FE thermal analysis.

The computational flowchart can be followed in Fig. 3.1. The methodology starts
with the electromagnetic analytical model that allows the computation of the stray power
losses dissipated within the studied device. After introducing geometric dimensions,
initial material properties data and the source current value, an analytical representation
of electromagnetic field is obtained applying the Biot-Savart law. Next, stray losses
distribution generated by alternating high currents through cover plates are calculated
from the numerical integration of the analytical formulation of Poynting’s theorem [81].
From that electromagnetic solution the power dissipated within the SI is introduced
in the FE thermal model as heat sources. They are used together with boundary
conditions and the initial nodal temperatures as input for the thermal problem. The
numerical solution gives the steady state temperature distribution linking in this way
the two models. According to (2.2), the field frequency and material properties set the
penetration depth of the electromagnetic field into the metal, and consequently the
thickness of the volume regions where heat sources are located in the thermal model.

To choose the adequate data of electromagnetic and thermal parameters is essential
for the accuracy of temperature results. Some parameters needed in the computation
models related with boundary conditions and material properties might be inaccurate
as they are usually taken from catalogs and the literature. Therefore, in the proposed
methodology, models are adjusted by means of a calibration process which identifies the
appropriate input data for the simulation to match the measured temperature taken
as reference (Ts). Once the simulation input parameters are determined and their
interdependence stated, the temperature distribution can be predicted on transformer
covers for any load condition and different number of conductors, i.e. single-phase or
three-phase bushings.
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Figure 3.1: Flowchart corresponding to the 3D proposed methodology for the
electromagnetic and thermal linked models.

The computational methodology is detailed in the next sections, while an attempt to
solve the parameter identification problem is given in Chapter 5.

3.1 Electromagnetic Analytical Approach

In the next sections the physical-mathematical aspects regarding the electromagnetic
analytical approach of the proposed methodology are explained in detail. It is shown how
the use of the Poynting’s Vector for a model involving high current carrying conductor
and a nearby permeable surface can help qualitatively explain how the electromagnetic
energy flows in the system, the transfer of energy and stray loss dissipation.

3.1.1 Electromagnetic plane waves propagation

When electromagnetic waves are incident on a good, but not perfect conductor, they
penetrate a small distance into the material. The equations of electromagnetic fields
inside a conductor can be formulated from the solution of Maxwell’s equations. For
general time-varying fields, Maxwell’s equations [82] may be written in differential form as
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∇ ·B = 0 (3.1)

∇× E = −∂B

∂t
(3.2)

∇ ·D = ρ (3.3)

∇×H =
∂D

∂t
+ J (3.4)

where B is the magnetic flux density in Wb/m2 or T, E is the electric flux intensity in
V/m, D is the electric flux density in C/m2, H is the magnetic field density in A/m, J is
the electric current density in A/m2 and ρ is the electric charge density in C/m3.

The current density J and the charge density ρ are the sources of the field and they are
related through the equation of continuity, specifying the conservation of charge, which
can be written as

∇ · J = −∂ρ
∂t

(3.5)

The above equations are supplemented by the constitutive equations describing the
macroscopic properties of the medium

D = εE (3.6)

B = µH (3.7)

J = σE (3.8)

where the constitutive parameters ε, µ and σ denote respectively, the dielectric
permittivity F/m, magnetic permeability H/m, and electrical conductivity S/m of the
medium. For isotropic materials these parameters are scalars, but for anisotropic materials
they become tensors.

Thus Maxwell’s equations (3.2) and (3.4) can be written in terms of only E and H as

∇× E = −µ∂H

∂t
(3.9)

∇×H = ε
∂E

∂t
+ σE (3.10)

Maxwell’s equations (3.9) and (3.10) couple the electric and the magnetic fields. If B
is time dependent, ∇ × E is non-zero. This implies that E is a function of position.
Furthermore, if ∂B/∂t itself changes with time, so does ∇ × E. In such a case E also
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varies with time since the ∇ operator cannot cause time variation. Thus, in general, a
time varying magnetic field gives rise to an electric field which varies both in space and
time. It will be seen that these coupled fields propagate in space.

Firstly, it is analyzed how the equations lead to transverse waves. Taking the curl of
(3.9) and substituting on the left hand side (3.10) yields

∇× (∇× E) = −µ ∂
∂t

(∇×H)

= −µ ∂
∂t

(
ε
∂E

∂t
+ σE

)
= −µσ∂E

∂t
− µε∂

2E

∂t2

(3.11)

In the same way, taking the curl of (3.10) and substituting on the left hand side (3.9)
yields

∇× (∇×H) = ε
∂

∂t
(∇× E) + σ (∇× E)

= ε
∂

∂t

(
−µ∂H

∂t

)
+ σ

(
−µ∂H

∂t

)
= −µσ∂H

∂t
− µε∂

2H

∂t2

(3.12)

Moreover, having the vector identity (3.13)

∇× (∇× F) = ∇ (∇ · F)−∇2F (3.13)

which described for any vector F and applied to (3.11) and (3.12), yields

∇× (∇× E) = ∇ (∇ · E)−∇2E = −µσ∂E

∂t
− µε∂

2E

∂t2
(3.14)

∇× (∇×H) = ∇ (∇ ·H)−∇2H = −µσ∂H

∂t
− µε∂

2H

∂t2
(3.15)

Having also from (3.1) that

∇ ·H = 0 (3.16)

and from (3.3), in absence of any source of charge ρ = 0

∇ · E = 0 (3.17)
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Thus, Helmholtz’equations are obtained describing the propagation of electromagnetic
fields waves.

∇2E = −µσ∂E

∂t
− µε∂

2E

∂t2
(3.18)

∇2H = −µσ∂H

∂t
− µε∂

2H

∂t2
(3.19)

Equations (3.18) and (3.19) can be written in frequency domain as

∇2E = µσ (jω) E + µε
(
jω)2E = jωµ(σ + jωε

)
E (3.20)

∇2H = µσ (jω) H + µε
(
jω)2H = jωµ(σ + jωε

)
H (3.21)

Which can be reduced to

∇2E− Γ2E = 0 (3.22)

∇2H− Γ2H = 0 (3.23)

where the complex constant Γ is defined as the propagation constant in 1/m.

Γ =
√
jωµ (σ + jωε) = α + jβ (3.24)

The real part of the propagation constant α is defined as the attenuation constant in
Np/m and the imaginary part β is defined as the phase constant rad/m. The attenuation
constant defines the rate at which the fields of the wave are attenuated as the wave
propagates, and the phase constant defines the rate at which the phase changes as the
wave propagates.

The electromagnetic waves E and H are defined as plane waves, i.e. they lie in a plane
xy perpendicular to the direction of propagation z and the are perpendicular to each other
as seen in Fig. 3.2. Moreover, E and H vary only in the direction of propagation, thus
(3.22) and (3.23) can be written in the form

∂2Ex
∂z2

− Γ2Ex = 0 (3.25)

∂2Hy

∂z2
− Γ2Hy = 0 (3.26)
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Figure 3.2: Propagation of electromagnetic plane waves.

The general solution to the above equations (3.25) and (3.26) is given in the form

Ex(z) = A1xe
−Γz + A2xe

Γz (3.27)

Hy(z) = A1ye
−Γz + A2ye

Γz (3.28)

where A1x, A2x, A1y and A2y are integration constants, which must fulfill the boundary
conditions.

Lets evaluate the case when of an electromagnetic wave incident on a surface of change
from a mean 1 to a different mean 2. Part of the wave is reflected and part penetrates
the mean 2. Under such conditions if we consider the boundary conditions for the electric
field E as defined below

if z = 0 Ex(z = 0) = A1x + A2x = Ems

if z →∞ Ex(z =∞) = A2x = 0
(3.29)

and analog boundary conditions are applied for the magnetic field H

if z = 0 Hy(z = 0) = A1y + A2y = Hms

if z →∞ Hy(z =∞) = A2y = 0
(3.30)

the solution of their Helmholtz’s equation can be written as

Ex(z) = Emse
−Γz (3.31)

Hy(z) = Hmse
−Γz (3.32)
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where Ems and Hms are the surface values of the electric and magnetic field respectively.
Moreover, at the boundary surface z = 0

∂Ex
∂z

= −ΓEmse
z = −ΓEms (3.33)

and considering also that

− µ∂H

∂t
= −µjωHms (3.34)

yield from (3.9) to

ΓEms = µjωHms (3.35)

From the relationship between the surface values of the electric and magnetic fields, having
units of Ohms (Ω), is thus defined the complex surface impedance in (3.36).

Zs =
Ems
Hms

=
µjω

Γ
(3.36)

Also combining (3.8) and (3.36) yield to

Jx = j
σµω

Γ
Hy (3.37)

which represents the induced currents due the field Hy are 90 ◦ shifted.

3.1.2 Conservation of energy and Poynting’s Vector

Poynting’s theorem is the fundamental energy-conservation theorem for electromagnetic
fields [83]. Using Poynting’s theorem, all sources of energy related to electromagnetic
fields in a given volume can be identified. The corresponding Poynting’s Vector defines the
vector power density (direction and density of power flow at a point). To derive Poynting’s
theorem, we start with the time-dependent Maxwell equations (3.2) and (3.4) above. The
energy is propagated trough the space from one point to another in a continuous way, by
means of electromagnetic waves. The electromagnetic waves transport electromagnetic
power and the product of E and H gives units of W/m2, i.e. volume power density. As
shown for the uniform plane wave in Fig. 3.2, the direction of E×H gives the direction
of wave propagation z, i.e. the direction of power flow. Thus, a relationship defining the
cross product of E and H is sought.

Using the vector identity (3.38) bellow,
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∇ · (E×H) = H · (∇× E)− E · (∇×H) (3.38)

and combining with equations (3.2) and (3.4), leads to

∇ · (E×H) = −H · ∂B

∂t
− E · ∂D

∂t
− E · J (3.39)

The three terms on the right hand side of (3.39) may be rewritten as

H · ∂B

∂t
= µ

(
H · ∂H

∂t

)
= µ

1

2

∂

∂t
(H ·H) =

∂

∂t

(
1

2
µH2

)
(3.40)

D · ∂D

∂t
= ε

(
E · ∂E

∂t

)
= ε

1

2

∂

∂t
(E · E) =

∂

∂t

(
1

2
εE2

)
(3.41)

E · J = σ (E · E) = σE2 (3.42)

which gives

∇ · (E×H) = − ∂

∂t

(
1

2
µH2 +

1

2
εE2

)
− σE2 (3.43)

Integrating (3.43) over a given volume V , enclosed by a surface S and applying the
divergence theorem yields

∫
V

∇ · (E×H)dv =

∫
S

(E×H) · ds

= − ∂

∂t

∫
V

(
1

2
µH2 +

1

2
εE2

)
dv −

∫
V

σE2 dv

= − ∂

∂t

∫
V

(wm + we) dv −
∫
V

pσ dv

(3.44)

In (3.44) the left hand side term is the net power flow out of the volume V . On the right
hand side, the terms represent from left to right the rate of loss of the stored magnetic
wm and electric we energy within V and the Joule losses pσ within V , i.e. the energy
transformed by the conductor into heat. Thus

S = E×H (3.45)
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Figure 3.3: Poynting’s Vector representation within a conductor wire.

is identified as the instantaneous Poynting’s Vector S, representing direction and density
of power flow at a point. Thus, it has been proven that there is a general law for the
transfer of energy, according to which it moves in perpendicular direction to the plane
containing electric and magnetic field strengths. In Fig. 3.3 the representation on the
Poynting’s Vector in and around a conductor wire is given.

Outside the conductor, the lines of magnetic field are circles around the axis of the
conductor and the lines of electric field point in this particular case inwards the conductor
centre. Poynting’s Vector is then parallel to the conductor surface, which means that
electromagnetic energy is transmitted by the dielectric mean surrounding the conductor.

Inside the conductor, lines of magnetic field are again circles around the axis, but
lines of electric field are along the wire. Thus, any tangent plane to the conductor
surface contains the directions of both, the electric and magnetic intensities. Therefore,
the energy flow represented by Poynting’s Vector is perpendicular to that surface, i.e.
radial direction, and pointing to the conductor axis. Across the ends, there is no energy
flowing, so the the energy entering through the external surface is accounted for the
energy transformed by the conductor into heat, as from Joule losses.
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Figure 3.4: Electromagnetic wave penetration inside solid metal.

3.1.3 Stray Losses applying Poynting’s Vector

If a conductor mean is considered σ 6= 0 and ε ≈ 0, thus, from Maxwell’s equations (3.1)
to (3.4) and the solution of their Helmholtz’s equation (3.19), the envelope of maximum
magnetic field Hm changes with penetration depth in direction of the propagation z of
electromagnetic fields Hm and Em from surface as seen in Fig. 3.4 following the laws [15]
describing processes inside solid metal

Hm = Hmse
−Γz (3.46)

and from (3.36) and (3.48)

Em =
Γ

σ
Hm (3.47)
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where Hms is the maximum value of the magnetic field intensity at the surface.
The propagation coefficient of the electromagnetic field in solid metal Γ is defined in

(3.48)

Γ = (1 + j)k (3.48)

where α = β = k = 1/δ is the attenuation constant, and δ defined in (3.49), is the skin
depth penetration of electromagnetic wave in solid metal, i.e. the distance in z over which
a plane wave is attenuated by a factor of e−1 in a good conductor.

δ =

√
2

ωµσ
(3.49)

The length of electromagnetic wave in solid metal from (3.46) is given by

λ = 2πδ (3.50)

Thus, given a plane wave incident on a conducting surface, the electric field, and thus
the current density, are found to be concentrated at the surface of the conductor. The
effect is frequency-dependent, and the phenomenon is known as the skin effect.

Having a 3D Cartesian coordinate system (x, y, z), the propagation in z-axis of power
of electromagnetic fields at any point (x, y) in VA/m2 can be formulated by Poynting’s
Vector, being its instantaneous value at time t calculated as

S(z, t) = E(z, t)×H(z, t) =
1

2
<e[E(z)×H∗(z)] (3.51)

where <e is the complex real operator and H∗ the complex conjugate of magnetic field
vector.

For a time-harmonic field, the time average Poynting’s Vector is found by calculating
the mean value over one period of time T , resulting

Sav(z) =
1

T

∫ T

0

S(z, t)dt (3.52)

Considering (3.48) and (3.48), the complex power losses over a metallic surface s in VA/m2

result

Sav(z = 0) = ps + jqs =
1

2

(1 + j)

σδ
H2
ms (3.53)
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The active part from (3.53) are the eddy current losses per unit surface area in W/m2,
in the absence of hysteresis and non-linearity of magnetic characteristic is

Ps =
1

2σδ
H2
ms (3.54)

where the magnetic field Hms is incident at the metal surface.
All representations of the Poynting’s Vector represent energy densities. Thus, to

determine the total power passing through a surface, the Poynting’s Vector must be
integrated over the considered surface. Equation (3.54 might be written in terms of
surface impedance Zs (3.36) as

Ps = <e(Zs)
H2
ms

2
(3.55)

By using an analogy with Ampère’s law, considering Hms = Im the peak current per
unit width, the stray loss equation (3.54) can be written in the form

Pσ =

(
Im√

2

)2
1

σδ
= I2

rmsR
′ (3.56)

where R′ = (σδ)−1 is the resistance of unit length of a layer of thickness δ (3.49) and unit
width [82]. The correct value of loss is therefore obtained if the current is assumed to flow
with uniform density in a layer of depth δ, for this reason δ is known as the eddy current
skin depth.

The representation on the Poynting’s Vector and the flow of energy within a conductor
traversing a steel cover plate system, and within a single-phase cover plate system are given
in Fig. 3.5 and Fig. 3.6 respectively. It is seen that electromagnetic waves hit the steel
plate surface, as in Fig. 3.4, propagating inside metal wall. This phenomenon causes the
power dissipation within the steel plate and consequent dissipation of heat.

3.1.4 Magnetic field analytical formulation

In the literature review, in Chapter 2, a large list of papers and methods devoted to
estimation electromagnetic leakage flux are given. Here, analytical methods are chosen
since the still have some advantages compared with more sophisticated ones, such as
quickly asses and evaluate the influence of several parameters and they make possible to
incorporate their results in other computer programs which calculate, for example, the
resulting losses and temperature rise. However, any available method might be used in
order to compute leakage magnetic field in transformer structural parts, to be introduced
then in the stray loss calculation by means of Poynting’s Vector (3.54).

In transformers, there are predominantly two kinds of surface excitation [84] as shown
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Figure 3.5: Energy flow of Poynting’s Vector within a conductor traversing a steel cover
plate.

H E

S

ε ≈ 0ε ≈ 0 ε ≈ 0

HE

S

i i

S

S

S S

Figure 3.6: Energy flow of Poynting’s Vector within a single-phase cover plate system.

in Fig. 3.7. Eddy currents and stray losses might be appreciable different depending
whether the material is excited by tangential or normal field, therefore the analytical
equations and methods derived for the field calculation also differ from each other. The
field computation differs for the case of transformer covers or bushing mounting plates,
where the field is tangential to the plate surface, as seen in Fig. 3.7(a), and the tank
wall where the field is normal to the iron surface as seen in Fig. 3.7(b). In case the
incident field is tangential, the field is directly proportional to the source current since
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Figure 3.7: Types of excitation field.

the magnetic field intensity H on the plate surface can be determined by the principle
of superposition. In case Fig. 3.7(b), for estimation of stray losses in the tank due
to a leakage field incident on it, only the normal or radial component of the incident
field Φ can be considered as proportional to the source current. The tangential field
component evaluation is more complicated and in many analytical formulations, the loss
is calculated based on the tangential components, which need to be evaluated from the
normal component of the incident field with the help of Maxwell’s equations.

The estimated values of these two tangential field components can be used to find the
resultant tangential component and thereafter the tank loss as per equation (3.54).

3.1.4.1 Transformer cover. Tangential field formulation

In the analytical formulation, the field intensity peak value at any point on the plate
surface is responsible for the loss distribution according to (3.87). In calculating the
magnetic fields due to electric currents, it is sometimes easier to use Biot-Savart’s law,
which allows to calculate the magnetic field near a long straight current-carrying wire
located along the z-axis with current moving in the positive z-direction, as seen from Fig.
3.8.

dH =
1

4π

I dl× ur
D2

sinϕ (3.57)

where dl is an element of length along the path taken by the ac current i, r is the position
vector of the point at which H is to be calculated. Equation (3.57) can be solved for the
magnetic field at any space-point due to a current of any shape. In principle one needs
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Figure 3.8: Biot-Savart law applied to calculate the magnetic field near a long straight
current-carrying wire.

only integrate along the path followed by the charges in the current. If a conductor of
infinite length is considered, the field distribution in the transformer cover is then assumed
purely tangential. As seen in Appendix A.1, in the case of an infinite conductor (3.57)
yields

h(t) =
i(t)

2πr
(3.58)

Thus, the maximum magnetic field on cover surfaces is calculated from the Biot-Savart
law as a vector sum of the field intensity due to all source currents flowing through the
conductors [15] applying

H2
m =

2

T

∫ T

0

h2(t)dt (3.59)

Expressing h as

h2(t) = h2
θ(t) + h2

r(t) (3.60)

where hr and hθ are the radial and tangential components of the magnetic field
respectively.

The particular formulation for one conductor, single phase and three phase bushings
are collected in the following paragraphs.
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Cover plate with one conductor

The magnetic field calculation for one conductor passing through a steel plate is

h2(t) = h2
θ(t) =

i21(t)

4π2r2
1

=
I2
m sin 2ωt

4π2r2
1

(3.61)

where i1(t) is the alternating current (ac) flowing through the conductor, Im is the peak
value of current, and r1 is the distance form a given point to the conductor. Then, the
resulting maximum magnetic field Hm, calculated from (3.59) in cylindrical coordinates
(r, θ) results

Hm(r, θ) =
I√
2 πr

(3.62)

and in Cartesian coordinates (x, y), is expressed as

Hm(x, y) =
I√

2 π
√
x2 + y2

(3.63)

being I the root mean square (rms) value of the current i1(t).

Single-Phase Bushing

For a single-phase bushing, the magnetic field is calculated as

h2(t) =
1

4π2

{(
i1(t) cos β′

r1

+
i2(t) cos β

r2

)2

+

(
i1(t) sin β′

r1

+
i2(t) sin β

r2

)2
}

(3.64)

where i1(t) and i2(t) are the single-phase ac currents and r1 and r2 are the distances from
a given point to each conductor, as shown in Fig. 3.9(a). The maximum magnetic field
from (3.59) in cylindrical coordinates (r, θ) results

Hm(r, θ) =
I a√
2 π

1√
r4 − a2

2
r2cos (2θ) +

a4

16

(3.65)

and in Cartesian coordinates (x, y) is expressed as

Hm(x, y) =
I a√
2 π

1√
x4 + y4 + 2x2y2 − a2(x2 − y2)

2
+
a4

16

(3.66)
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Figure 3.9: Magnetic field distribution calculation over transformer cover plates.

where I is the rms value of the ac currents and a is the distance between conductors as
seen in Fig. 3.9(a).

Three-Phase Bushing

For a three-phase bushing, the magnetic field is calculated as

h2(t) =
1

4π2

{(
i1(t)

r1

+
i2(t) cos β

r2

+
i3(t) cos β′

r3

)2

+

(
i2(t) sin β

r2

+
i3(t) sin β′

r3

)2
} (3.67)

where i1(t), i2(t) and i3(t) are three-phase ac currents and r1, r2, and r3 are the distances
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from a given point to each conductor as can be seen in Fig.3.9(b). The maximum magnetic
field in cylindrical coordinates (r, θ) from (3.59) results

Hm(r, θ) =
I a√
2πr

√
3r2 + a2

r4 − 2a2r2cos (2θ) + a4
(3.68)

and in Cartesian coordinates (x, y) is expressed as

Hm(x, y) =
I a√
2π

√
3x2 + 3y2 + a2

(x2 + y2)(x4 + y4 + 2x2y2 − 2a2x2 + 2a2y2 + a4)
(3.69)

where I is the rms value of the ac currents and a is the distance between conductors as
seen in Fig.3.9(b).

3.1.4.2 Transformer tank walls. Normal field formulation.

The proposed methodology in [81] can be extended to the case of tank walls. A steel
plate located on the xy plane is considered. A current conductor passing parallel to the
steel plate on the x direction, and at a distance a on the z direction, departs radial stray
flux which intrudes normal into the iron surface. However, inside metal, the flux turns
mostly tangential, being thus the tangential component of the magnetic field inside metal
the responsible for the losses.

To calculate the normal component of the magnetic field penetrating into the metal
surface, the method of images (or method of mirror images) may be used [15]. Using this
method a double medium space can be replaced by a single one by means of appropriate
coefficients. The method of images is a mathematical tool for solving differential equations
in which the domain of the investigated function is extended by the addition of its mirror
image, with respect to a symmetry plane, and thus reproducing the boundary conditions.
It has been typically applied to calculate the electrostatic potential due to a electric
charge, and might extended to the electromagnetic problem as both fields satisfy the
same form of Laplace’s equation [85]. Thus, the magnetic potential due to the presence
of a highly permeable metal surface, is the same as if the metal medium is replaced by a
parallel image current, located symmetrically to the metal surface. Thus, the distribution
of the magnetic field can be calculated at the vicinity of the conducting surfaces for any
current distribution.

When calculating losses in tank walls where the field varies only in the xy plane, the
problem is reduced to a 2D model [15]. Then, the maximum field can be calculated
from applying Biot-Savart law (3.58) to the currents system resulting from the method of
images, as seen in Fig. 3.10. Thus, the value of the maximum magnetic field in air Hmz0

at z = 0, i.e. the metal surface, can be calculated from (3.59), and the field inside metal
becomes
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Hmz(y, z) ≈
µ0

µ
Hmz0(y, 0)e−Γz (3.70)

From Maxwell equations, and the behavior of electromagnetic fields in solid metal
(3.46) and (3.47), the component of electric field inside metal is

Emx(y, z) = −jωµ0Fye
−Γz (3.71)

where

Fy = −
∫
Hmz0(y, 0)e−Γz + C0 (3.72)

being C0 the integration constant to be determined from boundary conditions. The
tangential component of the magnetic field on the surface of the tank wall in y direction
Hmy can be calculated thus from (3.36)

Hmy =
Γ

µjω
Emx (3.73)

which combined with 3.71 yields

Hmy(y, z) = (1 + j)µ0

√
ωσ

2

1√
µ
Fye

−Γz (3.74)

where C0 is calculated assuming that Hmy = 0 at both ends of the steel plate.
Thus, the tangential field component at the metal surface can be determined for any

conductor distribution. The particular formulation for one, two, three conductors passing
parallel to a metal surface are presented in the next subsections.

Current carrying conductor passing parallel to a steel plate

In the case of one current carrying conductor passing parallel to a tank wall, the normal
component of the magnetic field reaching the metal surface, is calculated from Biot-Savart
law (3.58) as seen in Fig. 3.10(a), at the metal surface (z = 0) resulting

Hmz0(y, 0) = nQ
I
√

2

π

y

y2 + a2
(3.75)

where I is the rms value of the ac current i flowing through the conductor, a is the distance
from the conductor to the steel plate and nQ comes from applying the image coefficient
in steel M = 0.6 to the imaged current Mi, as seen in Fig. 3.10.

nQ =
1 +M

2
(3.76)
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Figure 3.10: Method of images applied to a current carrying conductor to calculate the
magnetic field distribution at the vicinity of a conducting surface.

The tangential component of the magnetic field, responsible for the losses, as seen in
Fig. 3.10(b), is then calculated from (3.74) as

Hmy(y, z) = (1 + j)µ0

√
ωσ

2

1√
µ
Fye

−Γz (3.77)

being Fy from calculated from (3.72)

Fy = −nQ
I√
2π

ln(y2 + a2) + C0 (3.78)

where C0 is determined by considering Hmy = 0 at the tank wall boundary.

Single phase conductor system passing parallel to a steel plate

In the case of considering two conductors carrying single phase currents passing parallel to
a tank wall, two different lead arrangements are considered in the analytical formulation,
i.e. vertical and horizontal layout, as seen in Fig. 3.11.

The normal component of the magnetic field reaching the metal surface, is calculated
from Biot-Savart law (3.58) at the metal surface (z = 0) resulting in the case of vertical
layout
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Figure 3.11: Method of images applied to a single-phase conductor system to calculate
the magnetic field distribution at the vicinity of a conducting surface.

Hmz0(y, 0) = nQ
I
√

2

π

(
y − b

(y − b)2 + a2
− y + b

(y + b)2 + a2

)
(3.79)

where I is the rms value of the ac current, a is the distance from the conductor to the
steel plate, b is half of the distance between the conductors, and nQ the image coefficient
described in (3.76). The tangential component of the magnetic field, seen in Fig. 3.11(a),
responsible for the losses is calculated as from (3.77), where

Fy = −nQ
I√
2π

(
ln((y − b)2 + a2)− ln((y + b)2 + a2)

)
+ C0 (3.80)

When considering horizontal layout the magnetic field distribution reaching the metal
surface results

Hmz0(y, 0) = nQ
I
√

2

π

(
y

y2 + c2
2

− y

y2 + c2
1

)
(3.81)

and the tangential component of the magnetic field, seen in Fig. 3.11(b), is calculated as
from (3.77), where
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Figure 3.12: Method of images applied to a three-phase conductor system to calculate
the magnetic field distribution at the vicinity of a conducting surface.

Fy = −nQ
I√
2π

(
ln((y)2 + c2

2)− ln((y + b)2 + c2
1)
)

+ C0 (3.82)

being c1 and c2 the distance from either of the conductors to the steel surface, and C0

determined by considering Hmy = 0 at the tank wall boundary.

Three phase conductor system passing parallel to a steel plate

In the case of considering three conductors carrying three phase currents, passing parallel
to a tank wall, the normal component of the magnetic field reaching the metal surface, is
calculated from Biot-Savart law (3.58) at the metal surface (z = 0) resulting in the case
of vertical layout

Hmz0(y, 0) = nQ
I

π

√
(M −N)2 + (N − L)2 + (L−M)2 (3.83)
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Where

M =
(y − b)

(y − b)2 + a2

N =
y

y2 + a2

L =
(y + b)

(y + b)2 + a2

(3.84)

being I the rms value of the three phase currents, a the distance from the conductors to the
steel plate, b is the distance between the conductors and nQ the image coefficient described
in (3.76). The tangential component of the magnetic field, seen in Fig. 3.12, responsible
for the losses is calculated as from (3.77), where the function Fy involves the integral of
(3.83). Unfortunately it not been found the definite integral from the function (3.83),
thus the solution has been found approximating (3.83) by means of Taylor polynomials
and the use of symbolic integration to find the integrals.

Moreover, a factor ks is used in the case of normal field excitation to compensate the
value of losses in a plate of finite dimensions [16].

Pwall = ks · Ps (3.85)

Where Ps has been defined in (3.54). Considering a steel plate of height h in the x
direction and length L in the y direction, ks is defined as

ks =
h(

L

h

)2

+ 1

(3.86)

Thus, the actual power losses in the tank wall Pwall are calculated from (3.85) and
introduced in the thermal FEM model as heat sources.

It is here to mention that in the case of a two-dimensional problem, the solution by
means of e.g. FEM, RNM or other methods described in Chapter 2 does not present the
drawbacks discussed throughout this dissertation applied to the 3D problem and allow to
model complex geometries. However, the modelling by means of e.g. FEM still requires
a deep knowledge of the problem if calculations are to be reliable. The two-dimensional
problem is applied in Section 7.3, where the magnetic field distribution at the metal
surface is calculated from both RNM and FEM, and results are compared. If the
magnetic field distribution at the metal surface is calculated by any means, Poynting’s
Vector (3.55) can be used for the stray loss calculation.
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3.1.5 Stray losses applying Turowski’s equation

For calculating stray losses in conducting steel plates, on the surface of which the field is
incident having a maximum value of Hms, Poynting’s Vector equation has been defined
in (3.55). However hysteresis and non-linearity of magnetic characteristic have not yet
been considered in the formulation. When dealing with structural steel of real power
transformers, Turowski’s equation, defined in (3.87) is applied [15]. This equation is
based on Poynting’s Vector (3.55), applying some correction factors for non-linearities.

Ps = ap

∫∫
s

√
ωµ

2σ

| Hms(x, y) |2xp
2

dx dy (3.87)

where x and y are the Cartesian coordinates of each point on the plate surface -Fig. 3.8-
and µ is the magnetic permeability of the metal plate. By means of (3.87) the stray
losses into the skin depth penetration, calculated by using the resultant value of the field
intensity Hms due to source currents, are integrated on the entire plate area s.

A semi-empirical correction factor xp is used depending upon the structure of the
investigated element, the nature of the field and the type of the steel [12]. Thus, xp = 1
for non-magnetic metals, and xp = 1.05 to 1.14 for magnetic steel.

The factor ap is a linearization coefficient which takes into account the variation of
the relative permeability inside the material (z-direction) and hysteresis losses. It varies
from ap = 1 in the linear case, to ap = 1.7 in the pure saturation case [59]. Moreover,
analytical expressions are incorporated to the equation for the non-linear permeability
µ on the metal surface (xy-plane). These latter concepts are clarified in the following
subsections.

 

 

 

 

(a)

 

 

 

 

(b)

Figure 3.13: Non-linear magnetic BH curve and surface magnetic permeability behavior.
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3.1.6 Non-linear permeability on the metal surface

The non-linear behavior of the magnetic permeability µ is well known. In a non-linear
medium the permeability varies with the strength of the magnetic field µ(Hms), and it
is calculated from the BH curve of the material, as seen in Fig. 3.13. Its well known
effect is the saturation of the magnetic material, i.e. as the magnetic field Hms increases,
the value of the flux density B approaches a maximum level or saturation level B0 and
then is kept constant. Such non-linear characteristic must be considered in the case
of transformer cover plates, where some parts are strongly saturated and others not.
Considering the incident magnetic field distribution Hms(x, y) on the metal surface (z = 0)
can be calculated from Biot-Savart law [15], the non-linear magnetic permeability on the
metal surface µs(Hms, x, y) defined in (3.88) can be easily considered from the real BH
curve of the material as seen in Fig. 3.13.

µs(Hms, x, y) =
Bms

Hms(x, y)
(3.88)

being Bms = B(Hms) the value of the flux density corresponding to Hms. The surface
permeability increases with Hms as it approaches the saturation level, after reaching a
maximum at saturation, corresponding to a value of Hk, it inverts the behavior and
decreases towards the value of the permeability of air µ0. The non linear behavior of µs
can be incorporated into any model by introducing the BH curve of the material and
interpolating at each iteration to approach the permeability value at each magnetization
level.

However, when using the above proposed method, i.e. stray losses calculated from
Poynting’s vector and the magnetic field from Biot-Savart law, Turowski in [15] has
calculated analytical expressions to take into account the non linear iron permeability
at the metal surface, approaching the behavior of the BH curve.
In the case of the transformer cover or bushing box, for calculating stray losses in
conducting steel plates, on the surface of which the field is incident having a tangential
peak value of Hms, Turowski’s equation (3.87) is applied, and analytical approximation
(3.89) for the non-linear magnetic characteristic might be used.

√
µr H2 = c1H + c2H

2 (3.89)

where for structural steel the coefficients are c1 = 310 · 102 A/m and c2 = 7.9.
In the case of normal excitation, when calculating losses in tank wall where the field

varies only in the xy plane, having a peak value of Hmz0 at the surface (z = 0), the
problem is reduced to a 2D model [15]. From Maxwell equations, the field along the tank
wall in y direction is defined in (3.74). In [15] the following analytical approximation for
the non linear permeability is used

1√
µ

= A1 + A2
√
µH (3.90)

57



Chapter 3. Computational Methodology

where the coefficients for structural steel A1 and A2 are defined as

A1 = 14

√
Am

Vs
(3.91)

A2 = 0.13
m2

Vs
(3.92)

By using the above described analytical approximations to account for the non linear
behavior of the surface permeability, the non linear calculations, and integrals from
(3.87) are greatly simplified.

3.1.7 Non-linear permeability inside metal

In Turowski’s equation (3.87) for stray losses calculation, the factor ap is a linearization
coefficient which takes into account the variation of the relative permeability inside
the material. Its physical meaning is explained in detail in this section, as well as the
several approaches found in the literature to explain the above mentioned linearization
coefficient are presented below.

As it has been previously explained in Section 3.1.3, it can be seen in Fig. 3.4 that
the envelope of the maximum magnetic field Hm changes with field penetration in the
direction of propagation z from the surface until a certain depth λ (3.50) as from the law
(3.46). Moreover, from the permeability changes with the magnetic field as seen from the
BH curve in Fig. 3.13. It comes then from the above statements that the permeability,
would change inside solid metal in the z-direction µ(Hm, z) as the field is attenuating, as
seen in Fig. 3.14.

The magnetic permeability behavior inside solid metal influences the electromagnetic
fields, but also the active and reactive power losses distribution inside the ferromagnetic
material [15], therefore it must be considered when calculating losses. If the magnetizing
force reaching the surface Hms is strong enough, the value of the saturation flux density
B0 might be considered constant within the penetration depth and a step function
becomes a satisfactory approximation of the BH curve as it is shown in Fig. 3.16. Such
simplification allows the analytical derivation of equations for the surface impedance
(3.36) in the case of a rectangular (step) BH characteristic [59].

Rosenberg’s semi-empirical approximation

Rosenberg in 1923 [61], assuming that the field inside solid metal Hm attenuates
exponentially from the surface as from the function (3.46). Considering also that the
decrease of the magnetic field for strong or saturated fields, i.e. Hms > Hk, yields an
increase of the magnetic permeability, Rosenberg stated that the flux density inside metal
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Bm(z) would approximate a step function B′m(z) within the penetration depth defined at
saturation δSat, as seen in Fig. 3.14.

The active power equation deduced from Rosenberg’s theory, combined with empirical
data, for saturated iron per unit surface is

PRosenberg = 1.34

√
ωµ0

2σ

∫∫
s

√
µr
H2
ms

2
(3.93)

The above Rosenberg’s equation, compared with Turowski’s equation (3.87), and with
the linear theory (3.55) yields a value of the linearization coefficient ap = 1.34.
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Figure 3.14: Non-linear magnetic fields behavior inside metal.

Method of square waves

In 1954 MacLean [86] proposed to calculate the solution of non linear waves inside metal as
approximated by square waves. Thus, from a sinusoidal time varying fieldHs = Hmssinωt,
the maximum penetration depth at each point would be

δSat =

√
2

ωσB0/Hms

(3.94)

59



Chapter 3. Computational Methodology

Thus, the field penetrates up to this depth when the thickness d of the metal is greater
than δSat. From the solution of Maxwell’s equations and applying Fourier, the active
component of the Poynting’s Vector would be

PMacLean =
8

3π

H2
ms

δSat
=

8

3π

√
ωBms/Hms

2σ
H2
ms = 1.67

√
ωBms/Hms

2σ

H2
ms

2
(3.95)

Where the value of the saturation flux density B0 = Bms is taken from the magnetization
curve of the material, corresponding to the peak of the magnetic field intensity Hms at
the metal surface and assumed constant within the penetration depth as proposed by
Rosenberg [61] and seen in Fig. 3.14.

However, the aforementioned Rosenberg’s proposal was found to be not correct, even
for strong magnetization [59]. Therefore, a value of B0 lower than the peak value at the
surface Bms would be more appropriate and Agarwal in 1959 [59] stated that an exact
solution of the eddy current phenomena is not possible, and empirical calibration factors
have to be determined. The best value of B0 is found in [59] to be equal to 3/4Bms, yielding

PAgarwal =
8

3π

√
3

4

√
ωBms/Hms

2σ
H2
ms = 1.47

√
ωBms/Hms

2σ

H2
ms

2
(3.96)

The above MacLean and Agarwal’s theories, compared with Turowski’s equation
(3.87) and with the linear theory (3.55), yield values of the linearization coefficient
ap = 1.67 as for the pure saturation case proposed by Rosenberg, and ap = 1.47 corrected
by Agarwal.

Neiman’s method

The concept of complex magnetic permeability µ is considered from the ratio between the
instant values of magnetic flux density B(t) and magnetic field intensity H(t), where

µ =
Bm

Hm

= µejψ (3.97)

and

sinψ =
µPv
πB2

mf
(3.98)

where Pv are the hysteresis power losses per volume unit in W/m3, and f is the frequency.
The function µ = µ(z) can be predicted and formulated from the plane waves formulation,
considering the amplitudes ratio of Hm and Bm from an analytical approximation [15] as
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µ(z) =
µse

jψ(
1− z

zk

)2 (3.99)

where the surface magnetic permeability of the material µs is determined from its BH
curve, as seen in Fig. 3.13, for the maximum magnetic field value at the material surface
Hms [15], z is the distance from the metal surface,, zk is the substitution depth at which
the field almost disappears, and ψ is the mean value of the complex magnetic permeability
argument, corresponding with the hysteresis loses through the whole depth of the mean.

After the investigation of many magnetic materials, with different properties, Neiman
concluded that the magnetic permeability variation inside solid metal and hysteresis losses
can be considered with satisfactory accuracy assuming constant coefficients ap = 1.3 to
1.5, and aq = 0.7 to 0.8 for the active and reactive power losses in W/m2 and VAr/m2

respectively, also reported and extended by Turowski in [15].
Moreover, the surface impedance in the conductor might be written as

ZSat = (ap + aq)
1

σδ
(3.100)

and the equivalent penetration depth

δSat =
δ

ap
(3.101)

In the above equations, the non linearities and hysteresis loses are thus taken
into account by means of constant coefficients, proved to be accurate in many 3D
electromagnetic structures in the case of strong fields (Hms > Hk) [12]. In the case
of weak fields (Hms < Hk), or constant values of magnetic permeability the coefficients
ap = 1 and aq = 0.6 are the recommended values to apply in the above equations.

Substitution permeability

When evaluating the above equations (3.93), (3.95) and (3.96), it can be seen that power
losses Ps in steel at saturation, as well as surface impedance ZSat (3.100) and penetration
depth δSat (3.101), can be calculated with the classical formulae (3.55), introducing a
multiplier coefficient ap.

The same can be applied to the magnetic permeability, introducing the concept of
constant substitution permeability µsubs, defined as

µsubs = a2
p µs (3.102)

In general, the linearization coefficient ap can be understood as a factor which multiplies
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Figure 3.15: Non-linear magnetic permeability behavior inside solid metal.

the surface permeability value µs, to average out the permeability inside the penetration
depth as seen in Fig. 3.15. The concept of substitution permeability µsubs was introduced
by Turowski [15], and corresponds to a mean value of the magnetic permeability µ(z)
inside metal. In the case of strong fields, this value is greater than the magnetic
permeability value at the metal surface, as seen in Fig. 3.15.

3.1.8 Influence of metal thickness

It is also necessary to investigate the influence of thickness d of metal plates used in the
structural parts of the transformer [5]. Sometimes it has no influence but in case internal
wave reflection occurs, it plays decisive role at stray power loss reduction or increase.

From (3.50), at the depth z = λ, e−2π = 0.0019, and even at z = λ/2, e−π = 0.0432,
which means that at such depths the electromagnetic wave practically disappears in solid
metal, as seen in Fig. 3.4. Therefore when the thickness d of the metal plate is d > λ/2
the metal plate can be considered as half space with no internal wave reflections.

In the case mild steel, with electrical conductivity σ = 6.8 · 106 S/m and relative
magnetic permeability µr = 500, at frequency f = 50 Hz, the length of electromagnetic
wave (3.50) is λ/2 = 3.8 mm and steel plate of thickness d = 10 mm, i.e. usually the
minimum used for a transformer tank, it can be considered as half space without internal
wave reflections.

In case of amagnetic steel, with electrical conductivity σ = 1.13 · 106 S/m, and relative
magnetic permeability µr = 1.02, at frequency f = 50 Hz, the length of electromagnetic
wave (3.50) is λ/2 = 208.3 mm. Therefore when d > λ/2 the metal plate can be considered
as half space with no internal wave reflections. Otherwise, when d < λ/2, there exists
an internal wave reflection which reduces the losses significantly. In such case, a loss
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reduction coefficient ζ is introduced to calculate the active power in metal plates excited
symmetrically from both sides, i.e. transformer cover. According to [15], the coefficient ζ
is defined as

ζ =
sinh(kd)− sin (kd)

cosh(kd) + cos (kd)
(3.103)

The power dissipated in the case there exists internal wave reflection are calculated as

Ps = ζ ap

∫∫
s

√
ωµs
2σ

| Hms(x, y) |2xp
2

dxdy (3.104)

3.1.9 Non-linear Surface Impedance

When linear materials are modeled, the calculation of the surface impedances
is straightforward, but the description of conductive construction parts with the
magnetically linear surface impedance is only approximate. Since we are dealing with
conductive parts that have mostly non linear behavior, the magnetic BH characteristic
must be taken into account when calculating the losses [81]. The importance of
introducing the non linear SI relies on the fact that it is possible to represent the
distribution of non linear magnetic quantities on the electromagnetic analytical model.
It provides more precise information for stray loss computation taking into account
saturation of ferromagnetic materials as detailed below.

The concept of SI, which comes up based on the Poynting’s Vector formulation, was
first introduced into field theory by Schelkunoff in 1938 for time harmonic fields [23].
At the surface of good electrical conductors into which the penetration of the field is
limited, the tangential component of the electric field E can be considered under sinusoidal
performance proportional to the tangential component of magnetic field H and thus

Zs =
E

H
= (1 + j)

1

σδ
, (3.105)

being δ the skin depth in a conductor defined in (3.49), σ is the linear electrical
conductivity. If the magnetic permeability µ is considered constant in all directions,
then (3.49) is referred as the linear penetration depth δL and (3.105) as the linear Surface
impedance ZL.

Unfortunately, a real material presents a non-linear BH characteristic and therefore
a non linear magnetic permeability both at the metal surface (xy-plane) -Section 3.1.6-
and inside metal(z-direction) -Section 3.1.7- must be taking into account, which have a
significant practical importance on the accuracy of the model.

In the case of transformer cover plates, where the incident magnetic field Hms at any
point (x, y) of the metal surface (z = 0) can be calculated from Biot-Savart law [81], the
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surface value of the non linear magnetic permeability µs(x, y) can be easily considered
function of the real BH curve of the material. In this case, it is important to note that the
value of the skin depth (3.49), considering µ = µs(Hms, x, y) represents now the maximum
-or absolute- depth δabs defined in (3.106), the ac magnetic field wave front penetrates
into the conductor [87], as seen in Fig. 3.14.

δabs =

√
2

ωσµs(x, y)
=

√
2

ωσ

Hms(x, y)

B(Hms)
(3.106)

On the other hand, inside the solid metal, assuming saturation it was stated that a
multiplier coefficient ap should be applied to the linear theory (3.107). The sinusoidal
magnetic field formula is valid when the magnetic field reaches the surface in a mostly
tangential direction, as it does occur in the case of transformer tank covers [87].
Therefore by analogy with (3.105) the surface impedance ZSat for a rectangular BH
curve (saturation) and sinusoidal magnetic field results as defined in (3.107).

ZSat = ap
1

σδabs
(1 + j) (3.107)

When linear materials are modeled, the calculation of the surface impedances
is straightforward, but the description of conductive construction parts with the
magnetically linear surface impedance is only approximate. Since we are dealing with
conductive parts that have mostly non linear behavior, the magnetic BH characteristic
must be taken into account when calculating the losses [81].

In real 3D structures, some areas are strongly saturated and others are not. Since the
real magnetization curve of iron lies between the linear case and saturation, as shown
in Fig. 3.16, then the rigorous solution for the linear and saturation case can establish
the limits within which the actual iron performs. The non-linear SI concept is introduced
assuming that the BH curve is presented by the two extreme forms and it seems reasonable
then that the most adequate multiplier coefficient ap for each magnetization level would
shift from unit to 1.47 with increasing saturation.

An interesting proposal was established by Deeley in [88], where the formula of the
SI in the linear case (3.105) and the formula (3.107) obtained with the rectangular BH
characteristic have been combined in (3.108) in a final non linear surface impedance Zsnl,
taking into account the degree of saturation by means of a weighted function f(Hms) to
give accurate results from weak to strong magnetization.

Zsnl = f(Hms)ZL + (1− f(Hms))ZSat (3.108)

Guerin in [87] after tests found the best weighting function to be the one proposed by
Deeley [88].
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Figure 3.16: Non-linear BH curve approximation with a linear and step function.

f(Hms) =
1

1 + k
Hms

Hk

(3.109)

Where Hk corresponds to the value of the magnetic field at the knee of the BH curve and
k is a constant coefficient to be chosen depending on the nature of the field. According
to [87], the best value of k has been found to be k = 5 in the case of sinusoidal magnetic
field.

Thus, the stray losses for non linear materials Psnl are then calculated in (3.110) in a
similar way as it is done for linear case (3.55) but in this case, the linear surface impedance
ZL is substituted by the non linear surface impedance Zsnl (3.108).

Psnl =

∫∫
s

<e(Zsnl)
| Hms(x, y) |2

2
dx dy (3.110)

3.1.10 Non-linear penetration depth

The penetration depth δabs defined in (3.106) represents the absolute penetration of
magnetic field into conductor as it has been previously mentioned [87]. However, an
equivalent penetration depth (3.111) assuming saturation δSat can be defined from the
concept of the SI ZSat (3.107), i.e. dividing by the coefficient ap as shown in Fig. 3.14
[15].
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Figure 3.17: Analyical model for power losses computation on a steel plate with hole.

δSat =
δabs
ap

(3.111)

Equation (3.111) means that at saturation, the penetration depth δSat is smaller than
the maximum penetration depth defined for non-linear materials δabs.

Therefore, in the same way as for the non linear SI Zsnl (3.108), the penetration depth
can be combined for the linear region and saturation by means of the weighted function
(3.109) in a final penetration depth δnl (3.112) of the electromagnetic field into the metal.

δnl =
1

f(Hms)
1

δabs
+ (1− f(Hms)

1

δSat

(3.112)

When dealing with conductive parts that have mostly non-linear behavior, it must be
taken into account at calculating losses [29]. Thus, the stray losses for non-linear materials
Psnl are calculated in (3.113) in a similar way as it is done for linear case (3.55)-(3.105)
but in this case using the concept of non-linear penetration depth δnl defined in (3.112).

Psnl =

∫∫
s

1

σδnl

| Hms(x, y) |2
2

dx dy (3.113)

Consequently, non-linear penetration depth δnl, as seen in Fig. 3.17, allows to introduce
the saturation of ferromagnetic materials in the electromagnetic analytical model, and on
the other hand to set the thickness of the volume regions where heat sources (3.113) are
localized in the thermal FE model as detailed in next section.
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(a) (b)

 

(c) (d)

Figure 3.18: Power loss distribution for a 2500 A test over a) S1 and S2 −upper and lower
surface respectively−, b) hole region S3, c) lateral surface S4 and d) total power loss
distribution S1 + S2 + S3 + S4.

3.1.11 Computational electromagnetic model

Physical aspects concerning the computation of stray losses in metal plates have been
described all along previous sections, however there are several practical issues related
with the computational model which must be taken into account here detailed.

The electromagnetic analytical model for power losses computation is shown in Fig.
3.17. Power losses are calculated from (3.113) integrating over the steel plate surface S1

and S2 from the magnetic field distribution Hms(x, y) at each point. However, border
effects from the hole region S4 and lateral region S4 must be also taken into account.

In Fig. 3.18 the individual contributions from each surface are shown. Stray losses
in the hole region S3 are decisive to properly calculate the hottest spot temperature.
Density values in the hole region S3 −as seen in Fig. 3.18(b)− are several times greater
compared to those at upper and lower surface (S1 and S2) from Fig. 3.18(a), and they
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(a)  (b)

 

(c)

Figure 3.19: Border effect in case of a) 2500 A test on steel plate of thickness 1 mm, b)
case of 500 A test on a steel plate of thickness 6 mm with a asymmetry and conductor
hole of diameter 450 mm, c) case of steel plate with amagnetic insert of radius 250 mm.

increase proportionally to the plate thickness.
In the case of the lateral region S4 sometimes it has small influence as shown in Fig.

3.18(c). Note that the scale (W/m2) has been changed here and values are of the order
of 150 times lower. However border effects might be relevant in case of e.g. small plate
thickness, large conductor hole, asymmetry distribution of conductors or if considering
amagnetic inserts. Situations where these called border effects might be most influential
can seen in Fig. 3.19.

Therefore the final stray loss computational model is built by the sum of the stray
loss distribution individually calculated at each region, as shown in Fig. 3.18.
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3.2 Thermal FEM Analysis

Regarding the thermal FEM model, the basic relations of conduction heat transfer are
the Fourier’s law and the equation of heat conduction [81] where the volume density of
power of the heat sources is calculated from (3.110).

3.2.1 Thermal field FEM formulation

Related with the thermal FEM model [89] the used basic relations of conduction heat
transfer are the Fourier’s law

qk = −kt · ∇T (3.114)

and the equation of heat conduction

∇qk + ρCp
∂T

∂t
= pv (3.115)

Where qk is the heat flux density, kt is the thermal conductivity, ρ is the density, Cp is
heat capacity, T is the temperature and pv is the volume density of power of the heat
sources.

In the case of heating hazard transformer covers, authors are interested to assess the
thermal steady state by means of the Poisson diffusion equation as following

∂

∂x

(
kt
∂T

∂x

)
+

∂

∂y

(
kt
∂T

∂y

)
+

∂

∂z

(
kt
∂T

∂z

)
= −pv (3.116)

The boundary conditions at surrounding environment are given by convection and
radiation as

qcr = −hc(T − Ta)− εrσr(T 4 − T 4
a ) (3.117)

Where hc is the convection heat exchange coefficient, ε is the radiation heat exchange
coefficient or emissivity, σr is the Stephan-Boltzmann constant and Ta is the ambient
temperature.

Having a 3D domain Ω, with a boundary surface s, it is discretized in a mesh of volume
finite elements Ωe with surface se. Considering the Galerkin’s Method, the previous
Poisson equation (3.116) is expressed in the following integral by means of Ni shape
functions ∫

Ωe

Ni∇(−kt∇T ) dx dy dz −
∫

Ωe

Ni pv dx dy dz = 0 (3.118)
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Integrating by parts the first element from (3.118) and applying the Ostrogradsky’s
theorem leads to∫

Ωe

kt∇Ni∇T dx dy dz −
∫
se

Ni kt
∂T

∂n
ds−

∫
Ωe

Ni pv dx dy dz = 0 (3.119)

Thus, boundary conditions can be easily applied in the surface integral se from the
previous equation.

In each finite element of the mesh resulting from discretizing the 3D domain, the
temperature is expressed by the approximation polynomial

T =
n∑
j=1

TjNj(x, y, z) (3.120)

Equation (3.119) can be written for each element Ωe of the mesh of transformer cover in
matrix form as

[Se] [T e] = [F e] (3.121)

Where [Se] is the stiffness or coefficient matrix, [T e] are the nodal temperatures and [F e]
is the heat source vector or forcing vector. The coefficient matrix is calculated from

Seij =

∫
Ωe

kt

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y
+
∂Ni

∂z

∂Nj

∂z

)
dx dy dz (3.122)

The power volume density of the heat source due to electromagnetic losses for each element
is defined as

F e
i =

∫
Ωe

pvi dx dy dz +

∫
se

Ni kt
∂T

∂n
ds (3.123)

3.2.2 Thermal FE model

The non-linear penetration depth δnl (3.112) has been found to influence electromagnetic
analytical model results i.e. computation of power loss. However, it must be also
considered when setting the volume thickness where heat sources are located in the
thermal FE model.

In the thermal model the volume over the skin depth penetration δnl is divided into
n sub-volume regions Vn, with surface sn, characterized by its radius from the conductor
centre Ri as seen in Fig. 3.17. Once the power losses are computed with the analytical
model for each surface region sn, they are exported to the thermal 3D FE model and
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Figure 3.20: Discretization of FE thermal model volume regions.
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Figure 3.21: Structured FE mesh, with thinner discretization into the penetration depth.

introduced as heat sources pv according to (3.123).
Particularly, the penetration depth in hole region δh −seen in Fig. 3.17− strongly

influences the hottest spot temperature results. Thus, the heat sources in the thermal
FE model must be set in the corresponding volume regions of thickness δnl, as seen in
Fig. 3.20.

Regarding the mesh, it must be mentioned that, in case of an electromagnetic analysis,
the finite element grid should be extended to the surrounding insulating media, whereas
the thermal problem is confined just to the eddy current carrying parts, i.e. the steel
plate. Moreover, an structured is found to be the most adequate for the studied problems
as seen in Fig. 3.21, but the requirement of several elements within the penetration
depth δnl is not mandatory for thermal analysis.
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Experimental Work

In order to illustrate the capability of the computational methodology presented in
Chapter 3 as a practical tool to assess the overheating on tank covers an other structural
parts of power transformers, an experimental work is carried out. The design of tests
and their execution are supported by Efacec Enerǵıa S. A. Power Transformers, Porto,
Portugal, transformer manufacturers.

A series of experiments are designed to determine the hottest spot areas over structural
steel plates used in tank walls and cover of power transformers, as consequence of the
induced magnetic field due to the presence of high current conductors (kA). Temperature
is monitored from the several experiments listed bellow.

− Cover plate. Case in which the steel plate has one or several holes, to each be passed
through by current carrying conductors, being the plate on horizontal position.

− Tank wall. Case in which one or several conductors pass parallel to the metal plate
at a certain distance, being the plate on vertical position.

− Bushing box. Experiments with round and square bushings box have been also
carried out, where one high current carrying conductor passes through.

The influence of various design factors is taken into account in the experiments, as e.g.:

− Current magnitude and phase. Current values from 200 A until 2.5 kA, in phase and
single-phase currents.

− Distance from the conductors to each other.

− Distance from the conductor to the steel plate, in case of tank wall tests.

− Number of conductors, either 1 or 2 conductors.

− Conductors layout. Vertical or horizontal layout in case of tank wall tests.

− Steel plate thickness. Plates of 1 mm, 6 mm and 12 mm are considered.
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− Materials. Mild steel and stainless steel are considered.

Important aspects which have been taken into account during the experimental work are
detailed in the next sections, as well as brief descriptions on the equipment used and
measurement conditions. Technical data is included in Appendix B.1.

Experiments were carried in air in order to obtain cooling conditions more severe
than those that could be obtained with transformer oil. However, once the model is
calibrated, and the computation methodology well established, cooling conditions might
be changed to those factors corresponding to real conditions on power transformers e.g.
oil or forced air.

4.1 Current Supply

One of the most important issues to carry out the heating tests in metal plates due to
nearby high current leads is the current supply itself. This is the source to the induction
heating problem. High constant values of current must be supplied, which create the
magnetic field intruding either tangential or normal into the metal plate.

Current Source

A variable current source from Majo System Integrator is used, where intensity values
up to 5 kA might be achieved. However, in the case of steady state heating tests, values
of no more than 2.5 kA are recommended. Technical data is provided in Appendix B.1.

Conductors

Solid copper conductors are used to be placed through or parallel to the steel plates. Their
section must be chosen greater than 1500 mm2 in order to avoid they are overheated.
Conductors of 48 mm diameter (≈ 1810 mm2) and length 1200 mm are used for test.
Moreover, two insulated stranded conductors connect the solid copper conductors to the
current source as seen in Fig. 4.1. The latter are flexible conductors which permit to
bring them further from the steel plate, so that the incident field on the steel plate is
purely that created from the solid conductors and unaffected by the turn wire. Some
wood supports are designed in order put the stranded conductors further from the steel
plates.

Current Measurement and Control

A three-phase power and energy analyzer Fluke 435 is used in order to measure and
set the appropriate current for each test. Technical data is provided in Appendix B.1.
Typically conductors resistance vary with temperature, and because of it the current must
be controlled and readjusted from time to time while tests are running.
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Figure 4.1: Laboratory setup for temperature measurement over a steel cover plate.

4.2 Temperature Measurement

Temperature measurement must be consistent. There are so many factors influencing
the plate temperature that must be taken into account and be recorded in order to later
validate properly each test. The power laboratory area where the experiments are carried
out is carefully closed with wood panel walls as seen in Fig. 4.1, so that it is a thermally
stable area, in general. The room temperature is measured and monitored at several points
on the test laboratory. Meanwhile, temperature on the steel plate is measured by means
of distributed sensors, and also by means of a thermal infrared camera, as detailed bellow.

Temperature Sensors Pt100

For the temperature measurement several temperature sensors Pt100 are distributed over
the steel plate as seen in Fig. 4.2. Pt100 temperature sensors use Resistance Temperature
Detector (RTD) made from platinum with resistance R0 = 100 Ω at 0 ◦C [90]. For the
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precise measurement of temperature, the platinum resistance thermometer offers better
advantages than other sensors (e.g. thermocouples) in repeatability and stability over a
long period. In addition high accuracy over a wide range of temperatures (from −200 ◦C
to +850 ◦C) allows replacement of a sensor without any need of readjusting of the
connected measuring devices [91]. Another advantage compared to other temperature
sensors, is that it is not necessary to use special cables to connect to the sensor.

Since the temperature measurement is based on the element resistance, any other
resistance (e.g. lead wire resistance or connections) added to the circuit will result in
measurement error. However, some wiring arrangements allow the monitoring or control
equipment to factor out the unwanted lead wire resistance and other resistances that
occur in the circuit. Here, sensors using the 3-wire construction, the most common in
industrial process and monitoring applications, are used for temperature measurement.
The lead wire resistance is factored out as long as all of the lead wires have the same
resistance as explained in Appendix B.1; otherwise, errors might result.

Finally, surface measurements can be one of the most difficult to make accurately.
Measurements can be highly sensitive depending on how the sensor is attached to the
surface. Several ways of gluing the sensors were investigated. In order to set the sensors
on the metal plate, some wood clamps are glued to the steel surface holding the sensor
in a fixed position. In addition, a thermal compound [92] and paper tape are used to
enhance the contact between the sensor and the plate.

Data Acquisition System

In order to measure temperature, the RTD elements must be connected to some sort
of monitoring or control equipment. A digital data acquisition system YOKOGAWA
DQStation DX1000 with 12 input channels is used to monitoring the measured
temperature from each of the Pt100 sensors, allowing their storage vs. time until the test
reaches steady state [93]. Information on DQStation wiring for temperature measurement
can be seen in Appendix B.1. Steady state temperature is considered when the maximum
temperature increase is ≈ 1 ◦C per hour.

Thermal Infrared Camera

Moreover, a thermal infrared camera Fluke Ti32 is available for temperature measurement
and thus thermal images are taken for each test once steady state is reached. Thermal
images are taken from each of the experiments in order to validate and compare with
Pt100 measurements.

An infrared camera measures the emitted infrared radiation from an object. The
fact that radiation is a function of the object temperature makes possible to calculate
and display this temperature. However, radiation sources from the surroundings also
reflect on the object surface and it must be compensated when taking thermal images so
that temperatures are measured accurately. This is done automatically by the camera
but there are some important parameters which must be calibrated, e.g. emissivity
of the object, distance between the object and the camera, relative humidity or room
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Figure 4.2: Laboratory setup for temperature measurement over mild steel cover plate
(left) and cover plate with amagnetic insert (right).

temperature. The most important factor to set correctly is the material emissivity,
chosen for the steel plate, rough and plane surface ε = 0.95 − 0.98 [94]. The room
temperature must be set according to each test.

4.3 Cover Plate Tests

A square mild steel plate of 1 m side is used for experimental setup as shown in Fig. 4.1.
In the plate, holes of 60 mm diameter are done to be passed through by solid copper
conductors. Through the conductors flows a 50 Hz current, which creates a magnetic
field intruding tangential to the steel plate. The steel plate is held by a closed-support
which states the boundary conditions. The temperature is measured by means of several
temperature sensors Pt100 distributed on the steel surface. Several paths are drawn for
the sensors depending on the tests. In general perpendicular paths departing either from
the plate center or from the conductor centre as seen in Fig. 4.2. Tests are running until
the plate temperature reaches steady state. The ambient temperature is also measured
during tests as well as the temperature inside the cover plate support. This setup is used
for the calibration process of electromagnetic and thermal parameters as described in
Chapter 5, as well as for validation of the results.

Tests are carried out for one current carrying conductor passing through the steel
plate, and for two conductors carrying in-phase and single-phase currents. For each
setup, several design factors are taken into account as described in the next sections.
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Figure 4.3: Laboratory setup for temperature measurement over a mild steel single-phase
cover plate, a = 250 mm (left) and considering amagnetic insert, a = 150 mm (right).

One current carrying conductor

Mild steel plates of thickness 1 mm, 6 mm and 12 mm are used for tests, with one hole in
the plate center to be passed through by a conductor, as seen in Fig. 4.2. Current values
from 200 A to 2500 A are considered. Temperature measurements are also taken on a
steel plate with the same dimensions, 6 mm thickness and welding an amagnetic insert of
250 mm radius, as seen in Fig. 4.2 (right).

Two current carrying conductors

Two steel plates of thickness 6 mm are considered, with two holes separated a distance
a of 150 mm and 250 mm from each other, respectively, as seen in Fig. 4.3. In-phase
and single-phase currents from 250 A to 1250 A flow through each of the conductors.
Temperature measurements are also taken on a steel plate with the same dimensions,
a = 150 mm and welding an amagnetic insert surrounding both conductors of 250 mm
radius, as seen in Fig. 4.3 (right).
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Figure 4.4: Measurement setup for tank wall tests.

4.4 Tank Wall Tests

In the case of tank wall tests, current carrying copper conductors are placed parallel to a
mild steel plate. A mild steel square plate 6 m side is placed in vertical position. The tank
wall plate and the conductors are held by wood supports as seen in Fig. 4.4. Through
the conductors flows a 50 Hz current, which creates a magnetic field intruding normal to
the steel plate and causing induction heating.

Temperature is measured by means of several temperature sensors Pt100 distributed
on the steel surface. Several paths are drawn for the sensors depending on the number
of conductors and the distance between each other. In general two perpendicular paths
are drawn departing from the plate centre as seen in Fig. 4.4. Tests are running until the
plate temperature reaches steady state. The ambient temperature is also measured during
tests to state boundary conditions. The setup here described is used for the calibration
of the computational model, as well as for validation of the results.

Test are carried out for one current carrying conductor, and for two parallel conductors
carrying in-phase and single-phase currents. For each setup, several factors are taking into
account described in the next sections.

One parallel conductor

A mild steel plate of thickness 6 mm is considered in the case of one current carrying
conductor placed parallel to the steel plate. Test are carried out for current values from
500 A to 2500 A, and varying the distance to the steel plate from 50 mm to 200 mm. The
setup for temperature measurement can be seen in Fig. 4.4.
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Figure 4.5: Laboratory setup for temperature measurement on a mild steel tank wall plate
with two conductors, horizontal (left) and vertical (right) layout.

Two parallel conductors

A steel plate of thickness 6 mm is considered, with two conductors placed parallel to it.
Conductors are arranged, as seen in Fig. 4.5, either in horizontal (left) or vertical (right)
layout. In-phase and single-phase currents from 500 A to 1250 A flow through each of the
conductors. Test are carried out considering a separation distance between conductors of
100 mm or 200 mm, and distance to the steel wall varying from 100 mm to 200 mm.

4.5 Bushing Turret

Tests are also carried out to assess the heating hazard on transformer bushing turrets, as
seen in Fig. 4.6. Square and round turrets made from both mild steel and amagnetic steel
are considered, where a solid copper conductor is placed passing through. The ac current
source supplies 2500 A. Temperature is measured by means of several temperature
sensors Pt100 distributed on the bushing turrets, either top and lateral surface. Tests
are running until the turret temperature reaches steady state. The room temperature is
also measured during tests to state boundary conditions.

Either tangential (top surface) and normal fields (lateral surface) take part on the
induction heating of the bushing box. Hence, the setup here described is used for the
validation of the computational model, for both the cover and tank wall, as well as a
practical application of the methodology proposed in this dissertation.
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Figure 4.6: Setup for heating hazard assessment on a transformer square bushing turret
(left) and round bushing turret (right).
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Chapter 5

Parameter identification problem

A methodology for the solution of 3D induction heating problems on transformer covers
based on electromagnetic analytical formulation linked with finite element method for
3D thermal analysis has been published in [81] and in this dissertation in Chapter 3. The
proposed methodology allows computing the temperature on metallic device elements
heated by electromagnetic induction and it is specially recommended for the heating
hazard assessment in those cases where depth of electromagnetic wave penetration
compared with machine dimensions is a key issue and power losses must be calculated
using Poynting’s Vector (3.87). An experimental work is presented in Chapter 4 and
measurements are intended to compare with simulations results from FE thermal analysis.
However, the difficulty to trust material properties and boundary condition data from
catalogues or available in the literature is experienced. These uncertainties are avoided
in the proposed methodology by introducing a parameter identification method (i.e.
calibration of the computational model) as seen in Fig. 3.1. Its objective is to identify
and adjust the electromagnetic and thermal input parameters, so that the computed
results match the measured temperature values taken as reference. Once the simulation
input parameters are identified, the temperature distribution can be accurately predicted
on transformer cover plates for other load conditions and different number of conductors
[81].

An attempt to identify these parameters is described based on single-objective
and multi-objective deterministic and non-deterministic optimization algorithms.
Nevertheless, in the literature there exist a wide variety of methods which might be used
to automate the calibration process, as for example population-based algorithms [95],
[96], [97]. Therefore, the algorithm to be implemented in the calibration process is left
to the free election of designers, according to their own criteria to identify and adjust
involved parameters. The only consideration designer must be aware is the suitability
of the computational approach to couple with optimization algorithms, in terms of
computational effort. In addition, key aspects on the parameter identification process
are developed in this chapter, such as considering e.g. the relative influence of each input
parameter on model output and sensitivity to measurement error.

Moreover, in many fields of engineering the lack of reliable information on the model
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inputs might hinder the computational effort and the pursued accuracy by the use of
sophisticated methods. Thus, the idea behind the parameter identification presented
here might be used as philosophy of verification and validation the computational models
used in the manufacturing industry.

Results from simulations with optimum/identified parameters are given in the next
Chapter 6 and compared to measurements. In Chapter 7 some practical applications are
shown to stress the potentiality of the whole methodology presented in this dissertation
including the parameter identification technique.

5.1 Background

Optimization strategies and optimal design of electromagnetic devices have constantly
grown in research [96], [98], [99], [100], [101]. In most recent years sophisticated design
optimization softwares are being integrated in the manufacturing industry in general, and
in particular to the design of power transformers [102]. The main target might be the
cost minimization of specific components or specific transformer characteristics, e.g. load
or no-load losses, so solving a direct optimization problem [30], [103]. If the objective is
to meet technical requirements then a synthesis or shaped design problem is solved [2],
[8], [104], [105], where the objective function is expressed in terms of basic set of design
variables. Deterministic [106] and non-deterministic [2] algorithms have been applied to
global transformer design optimization.

On the other hand, within the complexity of transformer design, experimental methods
combining data provided by measurements with analytical or numerical methods, become
of interest in order to provide efficient models for the accurate representation of certain
transformer components [30]. Generally, physical parameter values are roughly known
and have to be modified to obtain a simulation which corresponds to the experience. But
when a lot of influential parameters take part, to adjust each of them becomes a difficult
task, and needs many calculations. To this effect, optimization algorithms might used to
determine material data or linearization coefficients from measurements, so solving the
inverse or parameter identification problem [98], to which the present chapter is devoted.

The aforementioned need for computational parameters identification to come up with
accurate coupled electromagnetic-thermal models has been referenced in the literature
e.g. for linear actuators [107], medium voltage switchgear cells [108] or power transformers
[19]. In particular, the material data required for computation, i.e. electrical and thermal
conductivity and permeability (or BH curve), often show significant deviation owing to
e.g. the varying chemical composition, mechanical or thermal treatment. Moreover some
parameters present in the FE thermal model as convective heat exchange coefficients
are difficult to determine from theory or measurements. It is also found a significant
dependence between the numerical results and the type of mathematical solver used [81].
Thus, all necessary input parameters for eddy currents and thermal analysis need to be
identified in order to calibrate numerical models.

The parameter identification problem applied to metal partition walls located
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Figure 5.1: Simulink model for the Matlab-to-Flux3D coupled simulations.

between two medium voltage switchgear cells, where conductors go through, has been
described in the recent literature. Both, linear and non-linear electromagnetic parameters
(permeability and conductivity) are considered, but in case of non-linearity only the
identification of thermal parameters is possible. Of course, in such case the BH
characteristic and the conductivity of the material must be known beforehand. Particle
Swarm Optimization [108], [109], and Differential Evolution [110] algorithms have been
used to solve the parameter identification problem. However, in the above related studies
the relative weight of unknown parameters on the objective function is not referred,
leading to a high number of parameters to be identified, and various objective functions.
Thus the problem complexity and time consumption might become impractical. In
addition, no reference to possible measurement errors are made, which might hinder
a reliable parameter identification (intended to be used for further analysis or other
calculations in different device parts).

As final remark from the literature review, it is proven that there is a widespread
interest towards the topic of parameter identification problem in order to achieve accurate
and reliable computational models, which are often the base of the design process adopted
by manufacturers of electromagnetic devices.

5.2 Simulation Tools

When implementing an optimization process it is important to consider the software
capabilities to be coupled with each other, in order to automate the simulation procedure
[100]. Additionally, there exist a large amount of numerical packages available for the
solution of coupled electromagnetic and thermal problems which are able to solve both
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2D and 3D problems. However, their main drawbacks are the high computational effort
and time [111], [112].

In this dissertation, the analytical problem described in Section 3.1 for the
electromagnetic computation is implemented in MATLAB® [113]. The Finite Element
model for thermal analysis described in Section 3.2 is built in Flux 3D [114]. To
couple the electromagnetic analytical simulation and the FE thermal analysis there is
available a Simulink® block [115], enabling the MATLAB to Flux communication in
both directions. Therefore, the thermal model input parameters might be introduced
in Flux3D through Simulink and simulation results from the FE thermal analysis
might be exported back to MATLAB for further analysis. Thus, the Matlab-Flux
co-simulation is successfully implemented to build an automated coupled model. The
analytical-numerical approach provides in addition a suitable computational tool for the
solution of 3D electromagnetic-thermal problem with low computational times. It must
be also stressed the advantageous fact that, unlike shape design problems, the parameter
identification problems are mostly linear and do not need to modify the geometry or FE
mesh discretizing the field region at each iteration [116].

Moreover, MATLAB provides and adequate environment to develop and incorporate
optimization algorithms into the coupled simulation, as well as having available a Global
Optimization Toolbox [117] with implemented tools for defining and solving optimization
problems and monitoring solution progress.

It can be seen in Fig. 5.1 the block diagram build for the coupled simulations, where
the inputs to the FE model are the power losses: Psi− thermal heat sources on the
steel plate calculated from (3.87) and Pcond− copper conductor losses; and thermal
parameters: hc− convective heat exchange coefficient, kt− thermal conductivity, Ta−
room temperature, Tsup− temperature inside plate support (in case of transformer cover
tests). The output is the computed temperature corresponding to each sensor position
(T1 to Tns), where ns is the number of sensors.

5.3 Problem Description

The problem to be solved is the tank cover plate, with one conductor carrying 2500 A
passing through it, as described in Section 4.3. The physical aspects and general
computation methodology are described in detail in Chapter 3, even though the main
equations are here recalled. For calculating stray losses responsible for the induction
heating on the steel plate, Turowski’s equation is used −already defined in (3.87):

Ps = ap

∫∫
s

√
ωµ

2σ

| Hms(x, y) |2xp
2

dx dy (5.1)

being x and y are the Cartesian coordinates of each point, µ the magnetic permeability,
σ the electric conductivity, ω the angular frequency and where Hms may be calculated
according to (3.63). The factor ap is a linearization coefficient which takes into account
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the variation of the relative permeability inside solid steel and xp depends on the structure
of the investigated element, the nature of the field and the type of the steel [15].

Related with the FE thermal model, the interest here is to assess the thermal steady
state by means of the Poisson diffusion equation from (3.116):

∂

∂x

(
kt
∂T

∂x

)
+

∂

∂y

(
kt
∂T

∂y

)
+

∂

∂z

(
kt
∂T

∂z

)
= −pv (5.2)

where kt is the thermal conductivity, and pv is the volume density of power of the heat
sources. In addition, the boundary conditions are given by convection and radiation at
surrounding environment from

qcr = −hc(T − Ta)− εrσr(T 4 − T 4
a ) (5.3)

where hc is the convection heat exchange coefficient, ε is the radiation heat exchange
coefficient or emissivity −0.95 to 0.97 is used for steel−, σr is the Stephan-Boltzmann
constant 5.6703 · 10−8 W/m2K4 and Ta is the room temperature. Note that the term
from (3.117) corresponding to radiation would be neglected at the temperature values
concerned in this work [118].

The strategy for implementing the parameter identification process relies on the fact
that only a few parameters are chosen to be adjusted and their values can be handled
individually. The process consists of three main stages. The first step is to define the
most appropriate objective function and to set the parameters to be identified, based
on the relative weight or influence of each parameter on the temperature results. Next,
the identification problem is solved for the chosen parameters, where the main goal is
the accuracy −single-objective optimization−. Finally, sensitivity to measurement error
is included as an additional objective function, so making the identification problem a
multi-objective one. These three main stages are detailed in the next sections.

5.3.1 Objective function

The goal of the parameter identification problem is to attain the minimum temperature
discrepancy between measured temperature values and numerically calculated ones, i.e.
the accuracy of computed values is the objective function to be minimized. The accuracy
f1 has been defined as the quadratic mean of the temperature discrepancy between
calculated and measured values (in ◦C).

f1 =

√√√√ 1

ns

ns∑
n=1

(Tn − Tsn)2 (5.4)

where n = 1 to ns is the sensor number and Tn and Tsn are respectively the computed
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Figure 5.2: General flowchart of the computational methodology with calibration of the
numerical model by means of optimization algorithm.

and measured temperature at each sensor. The choice of the error function is very
important so that measured and simulated data must be related in a direct way and
ill-posed problems are avoided. Defining the objective function as from (5.4) is due to
more accurate results are obtained with less iterations number compared e.g. to the
discrepancy of the two-norm of Tn and Tsn or the infinity-norm (or maximum deviation).
In addition to this, the measured data taken into account is carefully analyzed and a
low (but representative) number of measurement points is considered. The temperature
sensors chosen are all in the same path or direction at various distances from the steel
plate center x (mm), in order to avoid e.g. asymmetry on the temperature distribution
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Parameter Lower bound Upper bound References

ap 1.3 1.5 [15]
µr 100 1400 [15], [87], [119]
σ 5.37 · 106 S/m 7.2 · 106 S/m [15], [120], [121]
xp 1 1.14 [15]
kt 40 W/mK 80 W/mK [121], [110]
hc 1 W/m2K 15 W/m2K [110], [118]

Table 5.1: Parameter bounds for mild steel cover tests.

due to the turn wire effect. The general flowchart for the implementation of the parameter
identification problem is shown in Fig.5.2.

5.3.2 Parameters

From the above equations (5.1), (5.2) and (5.3), the unknown or uncertain parameters
considered for the electromagnetic and thermal problem are:

− ap linearization coefficient for magnetic permeability inside metal

− µ linear steel magnetic permeability in H/m or in case µr steel relative permeability

− σ linear steel electrical conductivity in S/m

− xp semi-empirical correction factor depending upon the investigated structure, the
nature of the field and the type of the steel

− kt steel thermal conductivity in W/mK

− hc convective heat exchange coefficient −natural convection in air− in W/m2K

It must be stressed that the main unknowns of the identification problem are mixed
unknowns in the sense that some depend on the environment e.g. hc, while others depend
on the material e.g. kt and σ. This fact must be taken into account if the computation
is to be extended to other structural elements. Parameter bounds are collected in Table
5.1 and have been defined according to values found in the literature and manufacturer
catalogues.

The relative weight of parameters on the temperature distribution is discussed in the
next paragraphs in order to identify the most relevant parameters to be considered in
the modeling. Results can be seen in Fig. 5.3, where the analysis is done by varying the
parameter to be investigated within its bounds and all other parameters are kept constant.
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Figure 5.3: Sensitivity of electromagnetic and thermal parameters on a FE temperature
computation for the steel cover plate with one conductor passing thought it carrying
2500 A: a) ap− linearization coefficient, b) kt− thermal conductivity, c) hc− convective
coefficient, d) µr− relative permeability, e) σ− electrical conductivity and f) empirical
coefficient xp.
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Linearization coefficient ap

Starting from Fig. 5.3(a) the influence of the linearization coefficient ap for the magnetic
permeability inside metal is shown. The temperature distribution is computed for three
values within the limits shown in Table 5.1, but also with ap = 1 −value taken at weak
fields or linear behavior− for the sake of comparison. Its value does influence significantly
the temperature results, and it does depend on the material and the structure to be
investigated. Its value it uncertain and might be determined from measurements.

Thermal conductivity

In Fig. 5.3(b), the influence of the thermal conductivity kt on the temperature
distribution is analyzed. Its value is relevant on the temperature results and due to its
uncertainty it must be considered in the calibration of the numerical model.

Convective heat exchange coefficient

In Fig. 5.3(c), the influence of the heat exchange convective coefficient hc is meaningful
on the temperature distribution. Due to its uncertainty it must be considered in the
calibration of the numerical model. However, it does influence the results by rising
or dropping the temperature profile and it is not related with the material properties,
therefore, after the calibration of the computational model −and material properties−
its value can be replaced for any other conditions i.e. forced-air cooling, forced-oil cooling
or water-cooling, if coefficients are familiar.

Magnetic permeability

In Fig. 5.3(d), simulations results are shown for several values of constant magnetic
relative permeability µr. It can be seen from the results how its value does strongly
influence the temperature results. Moreover, the non-linear behavior of the magnetic
permeability µ(H) −Fig. 3.13− is well known, and detailed in Section 3.1.6. Either
the BH material curve or the analytical approximation for the non-linear magnetic
permeability at the metal surface (3.89) might be used, where the coefficients structural
steel are determined in [15]. Temperature results for µ = µ(H) are also shown in Fig.
5.3(d), stressing its importance in the coupled electromagnetic-thermal computation. If
the non-linear behavior is to be considered, the process of numerical model calibration
of the non-linear model is not possible, and the non-linear characteristic µ = µ(H) must
be known in advance for the considered materials. In references from J. Turowski 1993
[15], C. Guerin et al. 1996 [87], L. Susnjic et al. 2008 [119] and O. Biro et al. 2009
[24], BH characteristic data for structural steel used in transformer tanks can be found.
Saturation values vary from 1.65 T to 2 T as seen in Fig. 5.4(a). In Fig. 5.4(b) the
comparison of temperature results from computation with the various aforementioned BH
characteristics is seen. Despite the significant differences on the magnetic characteristics,
the final temperature results are slightly affected from the use of one or another. From
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Figure 5.4: Comparison of a) BH characteristics found in the literature for structural
steel and b) temperature computation for cover plate with one conductor passing through
carrying 2500 A from different BH characteristics.

this analysis it is concluded that the non-linear behavior must be considered in the
computation and the BH curve might be assumed as known, taken from the literature.

Electrical conductivity

In Fig. 5.3(e) the influence of steel electrical conductivity σ at steady state temperature
distribution is analyzed, considering from here µ = µ(H) in order to attain a more
reliable evaluation. The non-linear behavior of electrical conductivity σ = σ(T ) is well
known [122]. The same as for the magnetic permeability, if non-linear property is to be
taken into account, its value must be known beforehand. However if the linear problem is
solved, its value can be identified within the calibration procedure. As from Fig. 5.3(e),
by considering different values of constant electrical conductivity σ, it is seen how it does
influence the temperature results but the influence is more relevant on the region of higher
temperatures, close to the conductor and plate hole. In addition, results from considering
non-linear electrical conductivity from (5.5) are also shown in Fig. 5.3(e).

σ(T ) = σ(Tref )
1

1 + α(T − Tref )
(5.5)

where α is the temperature coefficient of resistivity of the material, Tref is the reference
temperature at which α is specified, σ(Tref ) is the electrical conductivity at Tref . Here
α = 0.003 [122], a value of σ = 5.37 · 106 S/m corresponding to the highest temperature
160 ◦C, and σ = 7.1 · 106 S/m at the lowest temperature 55 ◦C have been used. By
comparing results from constant σ = 5.37 · 106 S/m and σ = σ(T ) and owing to the wide
dispersion found on the steel temperature coefficient varying from α = 0.003 to 0.006
[122], [123] and electrical conductivity −Table 5.1−, it is found more consistent to let
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σ to be identified in the calibration of numerical model. It can be concluded from the
sensitivity of results in 5.3(e) that the identified value will correspond mainly to the
highest temperature region. Once the σ constant value is identified, its effect on the
detriment of accuracy might be assessed. Moreover to introduce non-linear electrical
conductivity in the computational methodology does present a disadvantage in the sense
that the required computational effort is increased.

Coefficient xp

Finally, in Fig. 5.3(f), the influence of the parameter xp is evaluated. It does depend
on the the structure of the investigated element, the nature of the field and the type of
the steel [15], nevertheless in the studied case here, values different from unity are found
to greatly alter the numerical results. Hence, xp = 1 will be considered in the computation.

5.4 Single-objective Optimization

In order to solve the parameter identification problem described in the previous sections,
the constrained minimization Single-Objective (SO) optimization problem must be solved.
The MATLAB Global Optimization Toolbox [117] function fmincon might be used to find
the solution that is a local minimum. It does attempt to find a constrained minimum of
a non-linear scalar function of several variables starting at an initial estimate. If x is the
vector of design variables and belong to a feasible region Ω ⊆ <nv , where nv is the number
of design variables, then the solution to the inverse problem is given by the minimization
of a suitable objective function f1(x)−quadratic mean of temperature deviation defined
in (5.4)− as:

given x0 ∈ Ω ⊆ <nv

min
x
f1(x), such that xl ≤ x ≤ xu (5.6)

being x0 the initial estimate, xl and xu the lower and upper bounds of the design
variables in x respectively. This is generally referred to as constrained nonlinear
optimization or nonlinear programming and the active-set algorithm is used [117]. The
active-set algorithm is a gradient-based algorithm but does not require gradient is to
be defined by the user, neither does accept a user-supplied Hessian (it computes a
quasi-Newton approximation). It is a local search algorithm and deterministic algorithm
which starts from a candidate solution and then iteratively moves to a neighbor
solution. As stopping criteria, both tolerance on the function value and tolerance on
parameters are set to 10−4 and the maximum number of solver iterations is limited to 100.
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Parameter Recommended values

ap 1.4
σ 7.2 · 106 S/m
kt 52 W/mK
hc 7.5 W/m2K

Table 5.2: Recommended input parameter values from the literature.

Ts2 Ts3 Ts4 Ts5 Ts6

Measurement 164.7 ◦C 133.4 ◦C 90.1 ◦C 66.9 ◦C 56.7 ◦C
Initial estimate 147.81 ◦C 115.9 ◦C 79.25 ◦C 60.79 ◦C 51.23 ◦C
Optimum parameters 165.8 ◦C 131.2 ◦C 89.9 ◦C 68.3 ◦C 56.9 ◦C

Table 5.3: Temperature results from recommended −initial estimate− and optimum
parameter values compared with measurements.

5.4.1 Results from single-objective optimization

The electromagnetic and thermal parameter identification is applied to a transformer
cover steel plate with one conductor carrying 2500 A passing through it, as described in
Section 4.3. The number of variables to be identified is nv = 4 (i.e. ap, σ, hc, kt), where
the lower and upper bounds are defined in Table 5.1. Non-linear magnetic permeability is
considered fromBH characteristic [15], and the coefficient xp = 1 is considered. Non linear
penetration depth in the hole region calculated from (3.112). As boundary conditions
Ta = 26.4 ◦C is measured from tests, as well as temperature inside support Tsup = 40.4 ◦C.

Convergence of the SO optimization algorithm is shown in Fig. 5.5, where only the best
individual from each iteration is represented. It is found to quickly converge to the same
solution. The initial estimate, i.e. set of recommended parameters from the literature,
are shown in Table 5.2. Temperature results from FE thermal analysis from the initial
estimate and identified parameters after SO optimization applying fmincon are compared
with measured values from sensors Ts2 to Ts6 in Table 5.3. Results are evaluated in terms
of Mean Deviation (MD) and Highest Deviation (HD) temperature, calculated from (5.7)
and (5.8) respectively.

MD(%) =

∑
n ‖(Tn − Tsn)‖

ns

1

Ts2
· 100% (5.7)

HD(%) =
maxn ‖(Tn − Tsn)‖

Ts2
· 100% (5.8)

Results are given in Table 5.4, where it can be noticed the fine-tuning of computation
with optimum parameters, compared to the initial estimation. Thus, if the set of
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Figure 5.5: Convergence of the optimization algorithm from solving single-objective
optimization problem with fmincon.

Mean Deviation Highest Deviation

(◦C) (%) (◦C) (%)

Initial estimation 11.3 ◦C 6.9 % 17.4 ◦C 10.6 %
SO Optimization 1.01 ◦C 0.61 % 2.13 ◦C 1.29 %

Table 5.4: SO optimization results compared to initial estimation.

identified parameters are used for thermal analysis on different parts, and other load
conditions, more accurate results would be obtained.

5.5 Sensitivity Analysis

A sensitivity analysis is carried out for the study of how the uncertainty in the output of
a model (numerical or otherwise) can be apportioned to different sources of uncertainty
in the model input.

In the particular problem assessed here, the uncertainty affecting the output (i.e.
temperature discrepancy) is mainly the measurement error, however the accuracy of the
numerical model might also to be taken into account.

To simulate the error affecting measured data, some parameter perturbation is
introduced in the computational model (hci, kti). Thus, sensitivity to measurement error
can be calculated as follows

f2 =
max(‖f1i − f1‖)

f1

· 100 % =
∆f1max

f1

· 100 % (5.9)
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Element Symbol εr (%)

Temperature sensor Pt100 εPt100 0.67 %
Acquisition data equipment εAcqData 0.32 %
Acquisition data display εDisplay 0.06 %
Measurement ripple εRipple 0.8 %
Sensor position εPosition 0.75 %
Current source value εCurrent 0.58 %
Numerical model εModel 0.58 %

Table 5.5: Relative error from elements affecting the accuracy of the model.

where f1i is the objective function (5.4) from the i-th perturbed values (hci, kti), and
∆f1i is the deviation from (5.4) at perturbed values f1i with respect to the non-perturbed
ones f1.

To carry out the sensitivity analysis, a random grid of unknown parameters hc and
kt values is generated, as seen in Fig. 5.7(a). Each combination, i.e. set of parameters
(hc, kt), is randomly perturbed, with i combinations and sensitivity is calculated from
(5.9). The measurement error and equivalent percentage of perturbation on the input
parameters is to be studied in order to perform a more reliable sensitivity analysis. Thus,
firstly the accuracy of the temperature measurement is investigated. The second step is
to identify the percentage of variation on parameters (hc, kt) which do reproduce the
measurement error.

Propagation of errors

The error introduced in the identification problem is due to uncertainties in the
measurement, i.e. the instrument precision (e.g. from data acquisition equipment, Pt100),
the error introduced from parameters influencing temperature distribution (e.g. source
current) or the measurement itself (e.g measurement ripple and sensors position). Some
error is also introduced from the numerical model (e.g. model mesh). All those factors are
taken into account and the relative error estimations εr (%) are calculated in Appendix
B.2. Thus, the probable εP might be calculated from the propagation of errors theory.
Instead of taking the sum of the errors −maximum error−, the square root of the sum of
the individual relative errors εri squared is considered as from

εP =

√∑
iε

2
ri = 1.56 % (5.10)

where εri are collected in Table 5.5. The probable error εP is always less than the
maximum error calculated to be 3.76 %. In temperature values, the probable deviation
from measurement to calculated values, referred e.g. to sensor Ts2 is ±2.55 ◦C, and the
maximum ±6.2 ◦C.
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Figure 5.6: Deviation from objective function ∆f1 for a set of parameters randomly
perturbed (with number of perturbations i = 100).

Parameters perturbation

In order to carry out the sensitivity analysis, the measurement error which has been
estimated in the previous subsection is to be reproduced in the computational model by
means of some perturbation on the input parameters. Thermal heat transfer coefficients
hc and kt are chosen as the parameters to be perturbed. The influence of the percentage of
input parameters perturbation on the output temperature must be calculated, and should
be close to the measurement error εP . Thus, a more reliable sensitivity analysis can be
implement.

A perturbation of 4 % on each of the parameters hc and kt, i.e. hc±4%, kt±4%, gives
results which vary from a minimum of 1.28 % to a maximum of 2.23 %, corresponding to a
deviation on sensor Ts2 of 2.1 ◦C and 3.65 ◦C respectively. Note that these minimum and
maximum variation depend on the set of input parameters (hc, kt), which are unknown and
vary within the bounds shown in Table 5.1. The output optimum/identified parameters
would be somewhere in between those values and thus, a 4 % variation on the parameters
is reasonable, taking into account that the measurement error εP from (5.10) is in between
those values.

Number of perturbations

An additional difficulty is to implement an inexpensive sensitivity analysis in terms
of computational time within the optimization process. A high number of random
perturbations, (e.g. i = 100) is chosen for the sensitivity analysis, where the deviation
from objective function ∆f1 is shown in Fig. 5.6. For the sensitivity calculation (5.9),
the maximum value is chosen ∆f1max = 1.10.

In order to successfully introduce the sensitivity analysis within the optimization
process with low computation times, instead of generating a high number of random
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Figure 5.7: Sensitivity analysis a) •− random grid of values and •− their perturbation
with �− optimum set of parameters from SO optimization and b) Accuracy vs. sensitivity
objective space with �− sensitivity from SO optimum solution.

perturbations, just the four combinations of maximum perturbations are taken (i.e.
hc ± 4%, kt ± 4%). Thus, ∆f1max is calculated to be 1.15 which if compared to the
previous analysis with random perturbations it seems a feasible approximation to be
included in the problem of identification of the set of non dominated solutions, otherwise
computational times would become excessive.

5.5.1 Results from sensitivity analysis

The random grid of values shown in Fig. 5.7(a) is used to carry out the sensitivity analysis.
Sensitivity is also calculated for the set of parameters identified from SO optimization.
The results from sensitivity analysis are shown in Fig. 5.7(b).

High sensitivity (70 %) results for the optimum solution and thus, from the sensitivity
analysis, it comes out that there might be optimum solutions less sensitive to random
perturbations (i.e. measurement error) than the best one, from SO optimization, at the
expenses of a degradation in accuracy.

Thus, sensitivity to measurement error defined in (5.9), is included as an additional
objective function, so making the identification problem a multi-objective one. The
solution of the multi-objective (MO) optimization problem is presented in the next section,
applying deterministic and non-deterministic algorithms for the sake of comparison.
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Figure 5.8: Goal attainment method for a problem with two objective functions.

5.6 Multi-objective Optimization

As previously mentioned, considering the sensitivity analysis from Fig. 5.7, it seems
reasonable to consider solutions less sensitive to measurement error in the solution of the
parameter identification problem. Thus, the presence of multi-objectives in a problem
gives rise to a set of optimal solutions (i.e. non-dominated solutions or Pareto-optimal
solutions), instead of a single optimal solution. Classical optimization methods suggest
converting the multi-objective (MO) optimization problem to a single-objective one by
determining one particular Pareto-optimal solution at a time [117]. On the other hand
there are available in the literature a number of MO evolutionary algorithms which
are able to find multiple Pareto-optimal solutions at one single simulation [124], [96].
A deterministic and a non-deterministic algorithm, i.e. the Goal Attainment Method
(GATT) [125] and the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [124]
respectively, are applied to the identification problem in the next sections.

5.6.1 Goal-Attainment Method

The Goal-Attainment Method (GATT) is a deterministic optimization algorithm, first
formulated in [125]. It minimizes the scalar quantity λ ∈ < with respect to the design
vector x ∈ Ω ⊆ <nv subject to

fi(x)− ωi · λ ≤ Fi (5.11)

where i = 1, nf is the number of objective functions to be considered, F ∈ <nf is the
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vector of ideal objective functions, which represent the goal point G and x ∈ [xl, xu] is
the vector of design variables being xl and xu the lower and upper bounds of x defined in
Table 5.1. The scalar quantity to be minimized λ represents the relative gap to the initial
objective F, and it is referred as the attain factor, or degree of over (positive) or under
(negative) attainment [126]. There is a useful generalization of the problem (5.11), which
might be alternatively formulated as

Ψ(x) = max
i

fi(x)− Fi
ωi

, ωi 6= 0, i = 1, nf (5.12)

where Ψ(x) is the function to be minimized by means of e.g. an algorithm of sequential
quadratic programming [117], [96]. This method is single-objective in essence and needs
to be applied several times to find an approximation of the Pareto front (i.e. set of
non-dominated solutions) of the given problem [96]. Thus, it becomes necessary to
estimate the search direction in form of weighting vector ωi, i ∈ {1, · · · , nf}. The
weighting vector defines the direction of a straight line, departing from the goal G, which
intersection with the Pareto front gives the feasible point to reach P, i.e. the solution
point Fs, as seen in Fig. 5.8.

In the particular case of the parameter identification problem including measurement
uncertainties, the problem described with two objective functions (i.e. f1− accuracy
and f2− sensitivity described in (5.4) and (5.9) respectively). An initial vector of ideal
objective functions (goal point) is chosen (e.g. F1 = 0.25 ◦C and F2 = 3 %). Note that the
goal point might be unfeasible. To obtain the tradeoff surface several search directions
are imposed such that ω1 +ω2 = 1 and ω1, ω2 ≥ 0. The goal attainment method does also
require one or several initial vectors of objective functions, given from a priori knowledge
of the problem, and needs to be applied several times to obtain the set of desired solutions.

Optimization results are collected in Table 5.6, where different variables correspond
to:

− ω1, ω2 are the weight coefficients.

− hc0, kt0 are the initial estimation x0 values for each of the parameters considered:
hc in W/m2K and kt in W/mK.

− hc, kt are the identified parameter values which belong to the Pareto front in W/m2K
and W/mK respectively.

− f1, f2 are the values of objective functions accuracy (◦C) and sensitivity (%) with
respect to parameters (hc, kt).

− λ is the attain factor at solution (hc, kt).

− iter is the number of iterations taken to reach the solution.

− func is the number function evaluations.
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Figure 5.9: 3D representation of feasible region vs. attain factor λ for different search
directions varying from �− (ω1 = 0.1, ω2 = 0.9) to �− (ω1 = 0.8, ω2 = 0.2).
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(c) ω1 = 0.6, ω2 = 0.4
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(d) ω1 = 0.8, ω2 = 0.2

Figure 5.10: Feasible region vs. attain factor λ for given search directions (ω1, ω2).
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ω1 ω2 hc0 kt0 hc kt f1 (◦C) f2 (%) λ iter func

0.015 0.985 6.09 61.52 6.92 61.30 1.26 69.79 67.81 13 59
0.020 0.980 6.09 61.52 6.67 63.22 1.38 58.49 56.62 18 115
0.025 0.975 6.09 61.52 6.57 64.03 1.49 51.37 49.61 25 139
0.030 0.970 6.09 61.52 6.50 64.61 1.58 46.15 44.49 32 229
0.035 0.965 6.09 61.52 6.44 65.08 1.66 42.12 40.54 24 145
0.040 0.960 6.09 61.52 6.39 64.49 1.74 38.89 37.38 24 303
0.060 0.940 6.09 61.52 6.24 66.71 1.99 30.40 29.15 34 278
0.075 0.925 6.09 61.52 6.15 67.41 2.15 26.47 25.38 23 147
0.100 0.900 6.09 61.52 5.97 68.61 2.47 23.06 22.29 27 228
0.125 0.875 6.09 61.52 5.81 69.63 2.77 20.68 20.21 32 234
0.150 0.850 6.09 61.52 5.68 70.52 3.04 18.84 18.63 37 302
0.175 0.825 6.09 61.52 5.56 71.33 3.29 17.34 17.39 25 171
0.200 0.800 6.09 61.52 5.45 72.08 3.52 16.10 16.38 23 180
0.250 0.750 6.09 61.52 5.25 73.47 3.96 14.14 14.85 34 216
0.300 0.700 6.09 61.52 5.07 74.78 4.37 12.62 13.74 27 188
0.400 0.600 6.09 61.52 4.73 77.26 5.15 10.35 12.26 32 213
0.500 0.500 7.75 45.00 4.42 79.74 5.92 8.67 11.35 30 215
0.600 0.400 7.75 45.00 3.26 80.00 9.46 9.14 15.35 14 58
0.700 0.300 7.75 45.00 2.71 80.00 11.57 7.85 16.17 11 45
0.800 0.200 7.75 45.00 2.12 80.00 14.07 6.45 17.27 12 49
0.900 0.100 7.75 45.00 1.40 80.00 17.47 4.91 19.14 11 44

Table 5.6: Results of applying goal attainment to the parameter identification problem.
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Figure 5.11: Optimization results from GATT: ◦− Identified set of Pareto-optimal
solutions, •− objective space, I − goal point, ∗− initial estimation and �− SO solution.
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For a better understanding of the application of GATT within the actual case of
study, Fig. 5.9 shows the representation of the parameter λ −to be minimized− for a set
of search directions (ω1, ω2) given in Table 5.6. Besides, at certain search directions (ω1,
ω2), the variation of λ in the feasible region (f1, f2) is given in Fig. 5.10.

The representation of the solution allows to plot the tradeoff surface of the
identification problem as seen in Fig. 5.11. Note that the choice of weights uniformly
distributed between 0 and 1 does not guarantee to obtain an uniform distribution of the
solutions in the Pareto front [126]. Thus a first approach is run with coarse step on the
weight functions to locate the area of interest. Then, in a second optimization phase fine
discretization on the weight functions is used on the area of interest to obtain a better
representation of the front.

5.6.2 Non-dominated Sorting Genetic Algorithm-II

When a multi-objective problem is addressed using Pareto optimal theory, special
attention has to be paid in order to obtain a full representation of the front [127]. Among
the various methods for evolutionary MO computing, Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) is gaining a wide popularity in computational electromagnetism.
It is a improved version of NSGA which has been criticized for its computational
complexity, lack of elitism and the need of specifying an optimal parameter value for
sharing parameter. NSGA-II alleviates all the above three difficulties, where a selection
method is used to emphasize current non-dominated solutions, and a crowding distance
method is used to maintain the diversity of the population. The general procedure is
synthesized in the following paragraphs.

Population initialization

The population pop is initialized as usual with np > 1 individuals, each having nf > 1
objectives. The initial population is generated based on the problem range and
constraints.

Fast non-dominated sorting approach

Once the population is initialized it is sorted based on non-domination into each front.
An individual is said to dominate another if the objective functions of it are no worse
than the other and at least one is better. Thus, each solution in pop must be compared
with other solutions in the population to find if it is dominated. A first front F1 being
completely non-dominant sets in the current population, the second front F2 is dominated
only by individuals in the first front, and the front Fk goes so on. Individuals in each
front are assigned rank values based on the front they belong to, e.g. individuals in first
front F1 are given a rank value of 1 and individuals in second F2 are assigned a rank value
of 2 and so on for each k−th front as seen in Fig. 5.12.
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Figure 5.12: Ranking of different fronts based on non-domination criterion and crowding
distance from NSGA-II algorithm, where solutions belong to •− first, ◦− second, �− third
and ×− k−th fronts, with their respective rank value.

Crowding distance

In addition to fitness value a new parameter called crowding distance is calculated for
each individual. The crowding distance is a measure of how close an individual is to
its neighbours. Large average crowding distance will result in better diversity in the
population. The basic idea behind the crowding distance is finding the Euclidean distance
between each individual in a front based on their nf objectives. Given a set of solutions
nk in the k−th non-dominated front, for each solution xi, i = 1, nk, the crowding distance
di with neighbour solutions xi±1 is

di =

√√√√ nv∑
p=1

[
x(i−1)p − x(i+1)p

xup − xlp

]2

, i = 1, nk (5.13)

where nv is the number of variables, and xup and xlp are the upper and lower variables
in x respectively as shown in Fig. 5.12.

Diversity preservation

A solution with smaller value of distance dij is said to be more crowded than other
solutions. A crowded comparison operator (≺n) is proposed to guide the selection process
at the various stages of the algorithm towards an uniformly spread-out Pareto-optimal
front. The comparison is carried out assuming that every considered solution has two
attributes, i.e. the non-domination rank −depending on the front Fk they belong to−
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Figure 5.13: Optimization results from NSGA-II: M − Identified set of Pareto-optimal
solutions, •− objective space, +− initial population chromosome pop and �− SO optimal
solution.

and the crowding distance dij. Thus, when two individuals are compared with differing
non-domination rank, the solution with lower rank is preferred. Otherwise, if solutions
belong to the same front (same rank), the solution to be chosen is the located in a lesser
crowded region (crowding distance is greater).

Recombination and Selection

The selected population generates offsprings from crossover and mutation operators. The
offspring population is combined with the current generation population and selection is
performed to set the individuals of the next generation. Since all the best individuals from
parent and child population are added in the population, elitism is ensured. Population
is now sorted based on non-domination. The new generation is filled by each front
subsequently until the population size exceeds the current population size. If by adding
all the individuals in a front Fk the population exceeds is the population size np then
individuals in front Fk are selected based on their crowding distance in the descending
order until the population size is np. And hence the process repeats to generate the
subsequent generations.
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hc (W/m2K) kt (W/mK) f1 (◦C) f2 (%)

6.92 61.29 1.26 70.74
6.72 62.75 1.34 64.94
6.71 63.17 1.37 63.38
6.68 63.15 1.37 59.15
6.61 63.69 1.44 55.56
6.59 63.87 1.46 53.00
6.53 64.36 1.54 48.36
6.43 64.85 1.65 46.92
6.43 65.08 1.67 42.89
6.37 65.45 1.76 44.13
6.37 65.65 1.77 37.74
6.26 66.19 1.93 36.72
6.26 66.54 1.96 31.62
6.16 67.30 2.13 27.25
5.99 68.53 2.44 23.39
5.79 70.12 2.84 20.54
5.75 70.03 2.89 19.88
5.11 79.03 4.71 13.62

10.01 44.63 5.92 11.16
10.16 40.74 6.75 9.50
10.63 37.85 7.77 8.08
10.99 35.16 8.75 6.90
2.24 80.00 13.57 6.71
1.98 79.52 14.79 6.16
1.73 77.13 16.35 5.75
1.61 76.34 17.11 5.50
1.42 76.20 18.08 5.10
1.00 72.94 20.94 4.34

Table 5.7: Results of applying NSGA-II to the parameter identification problem.

The main arguments to get the function running are a random initial population
chromosome pop, which should cover the entire objective space as seen in Fig. 5.13,
and the population size (np = 30). As stopping criteria the total number of generations
must be provided (gen = 30), after which the algorithm will automatically stop. Also
the number of number of objective functions nf = 2 and number of decision variables
nv = 2 and their bounds (Table 5.1) must be entered according to the objective function.
The whole procedure results in a quick convergence towards the non-dominated region
of the objective space and the sharing procedure helps to distribute individuals over the
front. Optimization results are collected in Table 5.7 and the representation of the final
generation chromosome allows to plot the tradeoff surface of the identification problem
as seen in Fig. 5.13.
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GATT NSGA-II

hc (W/m2K) kt (W/mK) f1 (◦C) f2 (%) hc (W/m2K) kt (W/mK) f1 (◦C) f2 (%)

6.92 61.29 1.26 70.74 6.92 61.30 1.26 69.79
6.68 63.15 1.37 59.15 6.67 63.22 1.38 58.49
6.43 64.85 1.65 46.92 6.50 64.61 1.58 46.15
6.37 65.65 1.77 37.74 6.39 64.49 1.74 38.89
6.26 66.54 1.96 31.62 6.24 66.71 1.99 30.40
5.79 70.12 2.84 20.54 5.81 69.63 2.77 20.68

Table 5.8: Comparison of a set of Pareto-optimal solutions from GATT and NSGA-II in
the region of interest of accuracy ≤ 3 ◦C.

5.6.3 Comparison of methods and optimization results

The application of the GATT method does require high-level of information to find an
approximation of the Pareto front of the given problem. The main drawback is that it
needs to be applied several times to find an approximation of the Pareto optimal solutions,
even varying the initial estimation points several times and leading to high computational
time. In contrast the main advantage found is that is possible to control the spread of the
Pareto-optimal solutions along front by setting a finer step discretization on the weighting
vector at the desired regions.

When applying NSGA-II a well-spread representation of the front is achieved with
less computational time. A proof of that is the number of function evaluations needed
by each of the algorithms to obtain a representation of the front. Applying the GATT
method the sum of func from Table 5.6 for all 22 search directions is 3861; compared to
the total function evaluations from NSGA-II (gen = 30, np = 30) which is counted to be
848 (≈ 80% less of function evaluations).

GATT and NSGA-II have been successfully applied to solve the parameter
identification problem and optimization results are compared in Fig. 5.14 showing good
agreement along the tradeoff surface. Also the solution from SO optimization is plotted in
Fig. 5.14, stressing the consistency of results, as SO optimization represents a particular
solution from the front. In Table 5.8 a set of solutions from each of the methods applied
are collected for their comparison, and thus easily obtain the set of parameters chosen
for computation according to desired criteria on accuracy and sensitivity to measurement
error.
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Figure 5.14: Accuracy vs. Sensitivity objective space with: �− SO optimal solution and
set of Pareto-optimal solutions from ◦− GATT compared to M − NSGA-II for the region
of interest (f1 < 3 ◦C).

The above comparison yields significant conclusions on the efficiency of the algorithms
and the selection of the most suitable for the parameter identification problem.

The most adequate solution of compromise between high accuracy f1 and low
sensitivity f2 from Table 5.8 might be chosen around the point f1 = 2 ◦C and f2 = 30 %.
Thus, mean deviation (5.7) and highest deviation (5.8) values are compared in Table
5.9 for the initial estimation set of parameters, recommended values from the literature
as seen in Table 5.2−; the set of identified parameters from SO optimization; and the
set of identified parameters from MO optimization. The parameter identification taking
into account sensitivity to measurement error yields an improvement on the accuracy of
results when tested for other current values. The fine-tuning of computation with the
set of identified parameters from MO optimization can be seen from the comparison in
Fig. 5.15 with measurements and the recommended values from the literature (initial
estimation). Thus, if the set of identified parameters is used for thermal analysis on
different parts of transformers, and other load conditions, more accurate results would be
obtained, as seen in the next Chapter 6.
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Initial estimation SO Optimization MO Optimization

Test current MD HD MD HD MD HD

500 A 4.7 % 6.8 % 1.9 % 2.8 % 1.6 % 2.6 %
1000 A 8.1 % 12.7 % 2.9 % 5.4 % 2.4 % 5.2 %
1750 A 8.6 % 13.4 % 2.0 % 4.5 % 1.5 % 4.2 %
2500 A 6.9 % 10.6 % 0.6 % 1.5 % 1.0 % 1.9 %

Table 5.9: Relative error from initial estimation set of parameters, SO optimization
solution and MO solution taking into account sensitivity to measurement error.
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Figure 5.15: Comparison of measured and numerical-calculated temperatures by using
Initial Estimation set of parameters and identified parameters from MO Optimization for
the calibration current 2500 A and tested for several current values.
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Chapter 6

Computation and Results

In this chapter results from the computational methodology proposed in Chapter 3 are
presented. Several study cases are given to evaluate e.g. non-linear behavior or influence
of metal thickness in the electromagnetic analytical model. Finally, temperature results
from tests with either 1 or 2 current carrying conductors are also given in order to validated
with measurements from tests described in Chapter 4.

6.1 Results from Electromagnetic Analytical Model

By means of the non-linear penetration depth analytical model described above and
in Section 3.1.10, results from a wide range of currents can be presented stressing the
behavior of magnetic quantities whether the iron performs at the linear or saturation
region of the material BH curve.

One current carrying conductor

In the next Fig. 6.1 to Fig. 6.6 results from the electromagnetic analytical model from
weak and strong field simulations (i.e. 500 A and 2500 A) are shown. It can be compared
for both cases how the magnetic flux density, magnetic permeability or the magnetic
field penetration depth vary over a square steel transformer cover plate, allowing a better
understanding of the specific problem features.

In the analytical formulation, the surface value of the magnetic field intensity Hms at
any point on the steel plate is responsible for the loss distribution according to (3.110).
The representation of the maximum magnetic field obtained from Biot-Savart law [81] is
shown in Fig. 6.1, where from Fig. 3.13 it can be noticed how their values correspond
either to the linear region in the BH curve in Fig. 6.1(a), and to the saturation region
in Fig. 6.1(b).

The magnetic flux density Bms is represented in Fig. 6.2. Here it can be appreciated
the high saturation of iron for strong fields in Fig. 6.2(b) in contrast to the linear
behavior for weak fields in Fig. 6.2(a).
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In Fig. 6.3 and Fig. 6.4 the variation of the magnetic permeability over the steel plate
and the non-linear penetration depth δnl as calculated from (3.112) are shown for weak
and strong fields. Results from the magnetic field penetration depth are particularly
important as it represents the volume thickness where the stray losses are introduced in
the thermal model as heat sources. In case of saturation -Fig. 6.4(b)-, the penetration
depth in the conductor hole region is more than three times higher than its value over the
steel surface. This fact highlights the importance considering the non-linear penetration
depth (3.112) in the thermal model to set the volumes of the heat sources mainly in the
hole region.

The representation of power losses distribution can be seen in Fig. 6.6, which are then
introduced in the thermal FE model as heat sources for the temperature computation.

Single-phase transformer cover

The non-linear electromagnetic model has been applied to a single phase transformer
cover plate, with a distance between conductors of a = 250 mm. Results from the
non-linear electromagnetic analytical model from weak and strong field simulations (i.e.
250 A and 1250 A) are shown in the next Fig. 6.7 to Fig. 6.12, where the same relevant
effects discussed in the previous paragraph take place.
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(a) (b)

Figure 6.1: Magnetic field distribution for a) 500 A and b) 2500 A.

(a) (b)

Figure 6.2: Magnetic flux density over a steel plate for a) 500 A and b) 2500 A.

(a) (b)

Figure 6.3: Relative magnetic permeability over a steel plate for a) 500 A and b) 2500 A.
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(a) (b)

Figure 6.4: Magnetic field penetration depth over a steel plate for a) 500 A and b) 2500 A.

(a) (b)

Figure 6.5: Non-linear surface impedance over a steel plate for a) 500 A and b) 2500 A.

(a) (b)

Figure 6.6: Power loss distribution over a steel plate for a) 500 A and b) 2500 A.
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(a) (b)

Figure 6.7: Magnetic field distribution for single-phase bushings a) 250 A and b) 1250 A.

(a) (b)

Figure 6.8: Magnetic flux density for single-phase bushings a) 250 A and b) 1250 A.

(a) (b)

Figure 6.9: Relative magnetic permeability for single-phase bushings a) 250 A and b)
1250 A.
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(a)
 

(b)

Figure 6.10: Penetration depth for single-phase bushings a) 250 A and b) 1250 A.

 

(a) (b)

Figure 6.11: Surface impedance for single-phase bushings a) 250 A and b) 1250 A.

(a) (b)

Figure 6.12: Power losses distribution for single-phase bushings a) 250 A and b) 1250 A.
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Measured Linear Model Non-linear PD Model

Current T(◦C) T(◦C) Deviation T(◦C) Deviation

200 A 25.5 ◦C 24.9 ◦C 2.3 % 25.1 ◦C 1.6 %
500 A 35.1 ◦C 33.2 ◦C 5.4 % 35.5 ◦C 1.0 %

1000 A 61.0 ◦C 63.5 ◦C 4.0 % 61.5 ◦C 0.9 %
1750 A 112.7 ◦C 139.0 ◦C 23.4 % 111.9 ◦C 0.7 %
2500 A 171.8 ◦C 237.1 ◦C 38.0 % 167.5 ◦C 2.5 %

Table 6.1: Hottest spot comparison from linear and non-linear Penetration Depth (PD)
models over a steel plate of thickness d = 6 mm.

6.2 Validation of FE Thermal Results with

Temperature Measurements

For validation of the non-linear penetration depth computational methodology the
temperature is measured over a square mild steel plate of 1 m side and 6 mm of thickness,
through which a solid copper conductor is placed as seen in Fig. 4.2 (left). Through
the conductor flows an ac current heating by electromagnetic induction the metal plate.
Experimental tests are presented in detail in Chapter 4. The temperature is measured by
means of several temperature sensors Pt100 distributed on the surface, and also by means
of a Thermal Infrared (IR) camera to capture the temperature distribution at steady
state. Thermal FE analysis is then carried out, where the computed losses are introduced
as heat sources, and the measured temperature at each sensor can be thus compared with
numerical results.

In the FE thermal model the volume over the non-linear penetration depth is divided
into n sub-volume regions Vn, with surface sn [81]. Thus, the value of δnl (3.112) varies
along the steel plate as seen in previous Sections 3.1.11 and 6.1. At thermal steady
state the variation of only tenths of millimeter does not vary the computed temperature,
however the real value of the δnl on the conductor hole border definitely influences
the results and the hottest spot temperature value. The material data required for
computation, is determined from measurements as presented in Chapter 5.

To fulfill a wide range from weak to strong fields the temperature is measured for several
current values from 500 A to 2500 A. Measurements are compared with the computed
temperature distribution from non-linear model in Fig. 6.13 for the calibration current
2500 A and tested for several current values, showing good agreement with each other.
Temperature results computed from the linear model (3.55), are also shown in Fig. 6.13
stressing the importance of the non-linear penetration depth model (3.110). Hottest spot
temperatures are shown in Table 6.1, as well as the deviation of either the linear and
non-linear models from measurements. Thermal IR image from Fig. 6.14(c) is compared
with numerical temperature results Fig. 6.14(d) from FE computation for the non-linear
penetration depth model, where the accuracy of obtained results is really shown.
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Figure 6.13: Temperature results for the linear and non-linear Penetration Depth (PD)
models compared with measurements along the steel surface.

6.2.1 Influence of plate thickness

To evaluate the influence of the steel plate thickness on the temperature distribution,
the computational methodology is applied to plates of d = 1 mm and d = 12 mm. The
hottest spot temperature computed for several current values is compared with measured
temperature in Table 6.2.

The good agreement from measured and computed temperature values is one more
validation of the computational methodology for the overheating hazard assessment and
also validate the accuracy of identified parameters in Chapter 5.

Slightly higher deviations are computed for the 1 mm model. It is here to mention that
d < λ/2, i.e. there exists an internal wave reflection which reduces the losses significantly.
In this case the screening coefficient ζ(x, y) (3.103) must be considered. The screening
coefficient varies over the steel plate surface when the non-linear penetration depth model
δnl(x, y) is considered.

In Fig. 6.14 thermal IR images from a 2500 A test are compared to results obtained
from FE thermal computation with non-linear penetration depth, showing good agreement
with each other and validating thus the computational model.

A latter study is presented in Fig. 6.15, showing the behavior of total power losses and
hottest spot temperature over a wide range of plate thickness used on structural parts of
power transformers. In Fig. 6.15(a) it must be mentioned firstly that values below 3 mm
are strongly influenced by the screening coefficient ζ. And secondly, after 6 mm it is seen
a slow rate of increase of power losses due just to the increase in the conductor hole −as
from Fig. 3.17−, being stay losses computed over the metal surface constant.
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(a) Thermal IR image, 1mm thickness

 

 

 

 

 

 

(b) FE thermal computation, 1mm thickness 

 

(c) Thermal IR image, 6mm thickness

 

 

(d) FE thermal computation, 6mm thickness

 

 

 

 

 

 

(e) Thermal IR image, 12mm thickness

 

 

 

 

 

 

(f) FE thermal computation, 12mm thickness

Figure 6.14: Temperature distribution over a steel cover plate of different thickness for a
2500 A test.
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d = 1 mm d = 12 mm

Measured Non-linear PD Model Measured Non-linear PD Model

Current T(◦C) T(◦C) Deviation T(◦C) T(◦C) Deviation

200 A 28.4 ◦C 26.9 ◦C 5.3 % 22.3 ◦C 22.7 ◦C 1.5 %
500 A 38.5 ◦C 36.8 ◦C 4.4 % 30.6 ◦C 31.7 ◦C 3.7 %

1000 A 45.2 ◦C 47.2 ◦C 4.3 % 54.7 ◦C 53.6 ◦C 1.9 %
1750 A 55.3 ◦C 57.2 ◦C 3.5 % 98.3 ◦C 97.8 ◦C 0.5 %
2500 A 65.1 ◦C 63.27 ◦C 2.8 % 146.4 ◦C 147.9 ◦C 1.0 %

Table 6.2: Hottest Spot Temperature from one current conductor passing through steel
plates of thickness d = 1 mm and d = 12 mm.
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Figure 6.15: Influence of steel plate thickness on power losses and hottest spot.

6.2.2 Single-phase bushings through cover plate

Moreover, to stress the usefulness of the presented non-linear penetration depth model,
temperature is measured over plates with two holes to each be passed through by a
conductor carrying single-phase currents, as from a single-phase transformer cover plate,
seen in Fig. 4.3.

Single-phase currents from 250 A to 1250 A are applied to tests, where the measured
hottest spot temperature and computed values can be seen in Table 6.3, being the
conductors are separated a distance of a = 150 mm and a = 250 mm respectively. In
Fig. 6.16 thermal IR images from 1250 A tests are compared to results obtained from FE
thermal analysis with non-linear penetration depth, showing good agreement.

It is important to note that in the thermal images seen in Fig. 6.14 and Fig. 6.16
some brighter regions correspond to paper tape to fix the sensors, which has different
emissivity, but do not correspond to real higher temperatures of the steel plate.
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a = 150 mm a = 250 mm

Measured Non-linear PD Model Measured Non-linear PD Model

Current T(◦C) T(◦C) Deviation T(◦C) T(◦C) Deviation

250 A 30.7 ◦C 30.4 ◦C 0.9 % 28.9 ◦C 28.3 ◦C 2.1 %
500 A 43.6 ◦C 44.9 ◦C 3.1 % 42.4 ◦C 42.9 ◦C 1.4 %
875 A 77.3 ◦C 79.3 ◦C 2.6 % 74.7 ◦C 75.3 ◦C 0.8 %

1250 A 114.5 ◦C 115.7 ◦C 1.0 % 106.3 ◦C 107.0 ◦C 0.6 %

Table 6.3: Hottest spot temperature over single-phase transformer cover plate separated
a distance a = 150 mm and a = 250 mm.

 

 

 

(a) Thermal IR image, a = 150mm

 

 

 

(b) FE thermal computation,a = 150mm

 

 

  

 

 

 

(c) Thermal IR image, a = 250mm

 

 

  

 

 

 

(d) FE thermal computation, a = 250mm

Figure 6.16: Temperature distribution over a steel cover plate with single phase conductors
for a 1250 A test.
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Figure 6.17: Temperature results for a mild steel plate with amagnetic insert compared
to measurements along the steel surface.

Parameter Lower bound Upper bound References

µr 1.005 15 [15], [128]
σ 0.91 · 106 S/m 1.6 · 106 S/m [129]
kt 15 W/mK 35 W/mK [129]

Table 6.4: Parameter bounds and SO optimization solution for stainless steel tests.

6.2.3 Cover plate with amagnetic insert

The computational methodology has been validated and compared to measurements
yielding good accuracy when mild steel cover plates are tested, either with 1 conductor
and single-phase bushings. Further experiments are carried out on steel cover plates with
amagnetic inserts as described in Chapter 4, Fig. 4.2 and Fig. 4.3.

Material properties for mild steel and boundary conditions on cover plate tests have
been found from MO optimization, seen in Chapter 5. However, stainless steel material
properties are still uncertain and must be determined from the solution of the parameter
identification problem. The unknown parameters and their bounds are shown in Table
6.4. Parameters are identified by means of SO optimization as described in Chapter 5.
Particularly, stainless steel has been found be slightly magnetic, with values of relative
magnetic permeability µr up to 15.

Temperature results over cover plate surface are plotted in Fig. 6.17, for the calibration
current 2500 A and tested for several current values. It is seen how the computed
temperature matches the measured values within the amagnetic insert (i.e. x < 250 mm)
and higher deviations are seen in the mild steel region. However, it has been found strong
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(a) Thermal IR image
 

 

 

(b) FE thermal computation

Figure 6.18: Temperature distribution over a steel cover plate with amagnetic insert for
a 2500 A test.

 

 

 

 

(a) Thermal IR image

 

 

 

 

(b) FE thermal computation

Figure 6.19: Temperature distribution over a single-phase transformer cover plate with
amagnetic insert for a 1250 A test.

discrepancy in the measurements depending on the measurement path, either x and y
directions as it is clearly seen in Fig. 6.18(a) −possibly due to turn wire effect−, where
computed temperature lies in between both values. Thermal IR image is compared with
computed temperature distribution in Fig. 6.18 for a 2500 A test showing good agreement.
Note that thermal IR image has to be calibrated as the emissivity coefficients differ from
both regions within the plate [94].

Temperature results have been also tested in case of single-phase bushings separated
a = 150 mm passing through transformer cover plate with amagnetic insert, as seen in Fig.
6.19. Temperature results show good agreement with measured temperature values, both
in the magnetic and amagnetic regions, proving thus the validity of the computational
methodology and the accuracy of identified parameters.
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a = 50 mm a = 100 mm

Measured Computed Measured Computed

Current T(◦C) T(◦C) Deviation T(◦C) T(◦C) Deviation

500 A 25.7 ◦C 25.1 ◦C 2.3 % 23.1 ◦C 23.3 ◦C 1.1 %
1000 A 26.7 ◦C 25.8 ◦C 3.5 % 28.9 ◦C 28.8 ◦C 0.1 %
1750 A 34.7 ◦C 32.9 ◦C 5.2 % 29.6 ◦C 29.7 ◦C 0.4 %
2500 A 46.7 ◦C 45.24 ◦C 3.1 % 37.2 ◦C 37.1 ◦C 0.3 %

Table 6.5: Hottest spot temperature from one current conductor passing parallel to a
steel plate at a distance a = 50 mm and a = 100 mm.
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Figure 6.20: Temperature along a tank wall plate due to a parallel conductor passing at
a distance a = 100 mm.

6.2.4 Tank wall

The computational methodology might be extended to the case of tank walls. High
current conductors passing parallel to the steel plate on the x direction, and at a distance
a on the z direction depart radial stray flux which intrudes normal into the iron surface.
When calculating losses in tank wall where the field varies only in the xy plane, having a
peak value of Hmz0 on the metal surface (z = 0), the problem is reduced to a 2D model,
as shown in Section 3.1.4.2.

Thus, having the magnetic field distribution on the metal surface, power losses can
be also calculated from Turowski’s equation (3.113). Following the same computational
methodology as for the 3D case, the temperature distribution and hottest spots are
computed from 2D FE thermal analysis.

Experiments are carried out on steel tank wall plates as shown in Chapter 4, Fig. 4.4
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Figure 6.21: Temperature distribution along a tank wall due to a parallel current
conductor passing at a distance a = 50 mm.

and Fig. 4.5. Thus, uncertain parameters for the simulation might be also determined
from solving the inverse problem. Material properties for mild steel plate have been
determined from MO optimization in the case of cover tests, as shown in Chapter 5.
However the linerization coefficient ap, which depends on the structure to be investigated
needs to be recalculated for the tank wall plate. In addition, convective heat exchange
coefficient might differ from horizontal to vertical layout. It also varies from the lower
part of the plate hcl (touching the floor), and the upper part of the plate hcu. Parameter
bounds are those shown in Table 5.1. Thus, unknown parameters are identified for the
tank wall plate with one conductor passing parallel at a distance a = 100 mm carrying
2500 A. The parameter identification problem is solved by means of SO optimization
parameters as described in Chaper 5.

Temperature results along the tank wall plate surface are plotted in Fig. 6.20, for the
calibration current 2500 A and tested for several current values, showing good accuracy.
Hottest spot temperature values are compared from measurements and tests in Table
6.5. In addition, hottest spot might be also compared with tests where the conductor
is placed at a distance a = 50 mm from the tank wall. Thermal IR image is compared
with computed temperature distribution in Fig. 6.21 for a 2500 A test showing good
agreement.

Temperature results have been also tested in case of single-phase bushings, either in
horizontal and vertical layout carrying each 1250 A, as shown in Fig. 6.22. Conductors at
horizontal layout are at a distance distance c1 = 100 mm and c2 = 300 mm respectively
from the tank wall. In the case of horizontal layout conductors are separated 2b = 200 mm
passing parallel to the steel plate at a distance a = 100 mm. Nevertheless, temperature
results show that overheating is not relevant as in the case of a single current carrying
conductor, and serve also to prove the validity of the method and identified coefficients.
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(a) Thermal IR image, horizontal layout
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(b) FE thermal computation, horizontal layout
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(c) Thermal IR image, vertical layout
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(d) FE thermal computation, vertical layout

Figure 6.22: Temperature distribution along a tank wall due to parallel single-phase
bushings carrying each 1250 A.
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Chapter 7

Practical Applications

One of the main components of power transformers besides the core and the winding
is the tank, and therefore its effective and reliable design is crucial. As first design
approach the investigation and deep understanding of the electromagnetic and thermal
phenomena occurring in the structure is essential, obtained from parametric investigation
and validated with tests has has been shown through previous chapters. However, an
interesting step forward is to implement the proposed the computational methodology to
study real transformer models and asses the capability of the tool for being integrated it
in the design process of large power transformers.

In this sense, several practical applications are presented in this chapter, which include
the overheating evaluation in bushing turrets, the design of amagnetic inserts in flat
transformer tank covers, and influence of tertiary stabilizing windings on the tank wall
overheating due to zero-sequence flux.

7.1 Overheating Evaluation on 3D Complex

Structures. Bushing Turrets

Due to the increase of rating and size of large power transformers and due to transport
restrictions, new and more complex constructions of structural parts, in particular around
high current bushings, are being developed. They consider the combination of different
materials and screening procedures in order to minimize total losses and avoid overheating,
thus requiring more accurate analysis [5].

Among 3D complex electromagnetic structures, the temperature rise due to
electromagnetic induction of iron turrets surrounding low voltage bushings are reported
here. The structure is undergoing both, normal and tangential field excitation, on lateral
and upper surfaces respectively. However their influence can be evaluated separately and
the computational methodology reported in this dissertation might be applied. Thus,
stray losses are computed by applying Turowski’s equation (3.87), with non-linearity
correction factors and screening coefficients if needed. The magnetic field calculation,
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Figure 7.1: Temperature distribution over a mild steel round bushing turret for a 2500 A
test.

 

 

 

 

 

 

 

 

 

 

 

(a) Thermal IR image

 

 

 

 

 

 

 

 

 

 

 

(b) FE thermal computation

Figure 7.2: Temperature distribution over a mild steel square bushing turret for a 2500 A
test.

responsible of the losses is reported in case of tangential and normal field in Section
3.1.4.1 and Section 3.1.4.2 respectively.

Experimental tests are described in detail in Chapter 4, where round- and
square-shaped bushing turrets are considered as seen in Fig. 4.6. Bushing turrets made
from mild steel and stainless steel are tested and the temperature is measured over the
surface at current values of 2500 A flowing through the conductor. Thermal FE analysis is
then carried out applying the computational methodology and aspects described through
this research, highlighting the non-linear penetration depth (3.112) aspects regarding
both, the electromagnetic and thermal models. Then, measured temperature at each
sensor can be compared with numerical results.
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(a) Thermal IR image

 

 

 

(b) FE thermal computation

Figure 7.3: Temperature distribution over a stainless steel round bushing turret for a
2500 A test.

 

 

 

 

 

 

(a) Thermal IR image

 

 

 

 

 

 

(b) FE thermal computation

Figure 7.4: Temperature distribution over a stainless steel square bushing turret for a
2500 A test.

The material data required for computation and boundary conditions are determined
from measurements as presented in Chapter 5 for the bushing cover (upper surface), with
recalculated heat exchange convective coefficients for the lateral surface in Section 6.2.4.
The amagnetic material properties are also determined from tests in Section 6.2.3.

7.1.1 Results

In Fig. 7.1 and Fig. 7.2 thermal IR images from a 2500 A test on steel round and
square shaped bushing turrets are compared to results obtained from FE thermal
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(a) Mild steel flat base and bushing turrets structure.

(b) Mild steel flat base combined with stainless steel bushing turrets.

Figure 7.5: Temperature distribution from 3D FE computation over a three-phase
transformer cover with bushing turrets for a 5000 A test.

computation with non-linear penetration depth, showing good agreement with each other
and validating thus the computational model. In Fig. 7.3 and Fig. 7.4 temperature
results are compared from stainless steel bushing turrets, showing good concordance
between measurements and computed values. It can be also seen that there is almost no
differences between both shapes concerning the overheating.

A computation on a three-phase system with bushing turrets and flat base is also
included. The transformer cover is 5 m long and 2.5 m, including bushing turrets for the
LV side of 5 m and 400 mm height and separated a distance of 1.2 m between them. Holes
for HV bushings are also modeled being 200 m radius, and separated a distance of 1.5 m.
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The thickness of flat cover base is 6.2 mm and of bushing walls 3.8 mm. The applied
current value is 5000 A. In Fig. 7.5(a) the whole structure is made from mild steel, where
excessive overheating is clearly seen. Figure 7.5(b) shows the temperature distribution
if the flat cover base is made from mild steel and the bushing turrets are instead made
from amagnetic material. It can be seen how due to the proper combination of materials,
the temperature is reduced to permitted values.

7.1.2 Contribution and conclusions

The analysis presented in Fig. 7.5 shows a drastic reduction of computation time, less
than 1 minute for a coupled electromagnetic-thermal simulation, due to the introduction
of the electromagnetic analytical model. The low computational effort is also due to
that fact that in the FE thermal model required for the proposed methodology only the
heated region needs to be modeled, providing the adequate heat exchange coefficients at
boundaries. It is discretized into approximately 27000 nodes, which is a relatively small
number compared to that required for a full 3D magneto-harmonic coupled with thermal
FE analysis. The computational results shown represent the capability of the models for
being implemented in the design stage of large power transformers.
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7.2 Amagnetic Inserts on a Flat Three-phase

Transformer Cover. Arrangement Decisions

In order to restraint the temperature on transformer covers, manufactures usually consider
different materials such as introducing amagnetic steel on thermally hazardous areas. The
main design criterion of the bushing adapters is the limit temperature rise caused by
leakage field due to the high current leads, where a reference value of temperature limit of
110 ◦C is considered for all the transformer metallic parts [15]. However, due to the high
complexity of computation and lack of reliable information manufacturers usually opt for
building the transformer hazardous structural parts from stainless steel instead of mild
steel. From the point of view of stray losses and reliability it is and evident best choice,
but on the contrary is the higher manufacturing cost. Stainless steel is up to 4 to 5 times
more expensive than mild steel and because of that, within the more a more competitive
market, manufacturers are more concerned about its performance.

In this section, a practical tool to design the arrangement of amagnetic steel inserts
surrounding high current leads in transformer cover plates is presented. The work
presented here has been published in [130]. Future lines of work would include to
implement an automated optimization process to design the leads arrangement and
amagnetic insert in order to minimize material cost on one hand and power losses on
the other as well as guaranteeing temperature levels withing their limits; i.e. achieving
the optimum balance between the transformer cost and performance [2].

7.2.1 Computational methodology. Important issues

The 3D methodology focused on assessing heating hazard on transformer covers [81] is
described in Chapter 3. The link between an analytical formulation for electromagnetic
field with the finite element method for thermal field is shown in Fig. 3.1. Thus the
resulting stray losses computed by means of the electromagnetic analytical formulation
are introduced in the FEM thermal model as heat sources for the computation of steady
state temperature distribution. The maximum value of the magnetic field intensity at the
surface Hms is responsible for the loss density and therefore sources for the local heating
as from (3.87). Excessive hot spots appear when Hms exceeds a certain limit value of
Hms,perm, permitted from the point of view of permitted temperature Tperm. From [15]
the permissible value of the temperature in covers with convection at both sides is 140 ◦C
corresponding with a Hms,perm value of 40 A/cm. Therefore, this value of Hms,perm will
be the limit value chosen to design the amagnetic insert dimensions in the three-phase
transformer tank cover for the studied case. This design criterion based on maximum
permitted values of magnetic field is included into the computation methodology as seen
in Fig. 7.6.

Concerning other computational aspects, it is necessary to investigate the influence of
thickness d of metal plates as from (3.46). Sometimes it has no influence but in the case
of stainless steel it plays a decisive role at reducing or increasing power losses as it has
been discussed in Section 3.1.8. Therefore the screening coefficient ζ from (3.103) must
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Figure 7.6: Flowchart corresponding to the 3D methodology for the electromagnetic and
thermal linked models with amagnetic inserts design.

be applied to Turowski’s equation as in (3.104).
The computational model is calibrated from tests with amagnetic insert as from Fig.

4.2 (right). Input parameters for test with amagnetic steel are identified and validated
from Chapter 5 and Chapter 6. The input simulation parameters have been already
tested for 1 conductor and single phase cover with amagnetic insert as seen from Fig.
6.18 and Fig. 6.19 respectively. Thus, once the computational methodology is validated,
results from a practical application with a three-phase bushing are shown in the following
sections.

7.2.2 Magnetic field and power losses results

Once the model is calibrated, the tool is used on a practical application consisting
on a three-phase bushing plate to highlight its capability. The three-phase steel plate
considered to model is 1.35 m width and 0.65 m length. The distance between conductors
a is 0.28 m and the plate thickness d is 5 mm. In order to fulfill a wide range of high-power
commercial transformers from 40 to 100 MVA a rated current value of 2 kA is chosen for the
simulation in the low voltage side. The obtained computation results of electromagnetic
field in A/m can be seen in Fig. 7.7, as well as the stray loss distribution in W/m2 is
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Figure 7.7: Magnetic field intensity (A/m) over a three-phase transformer cover for 2 kA
current.

Figure 7.8: Power loss distribution (W/m2) over a three-phase transformer cover for 2 kA
current.

shown in Fig. 7.8.
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(a)

 

(b)

Figure 7.9: Possible choices of amagnetic inserts arrangement seen from top view of power
losses distribution.

7.2.3 Amagnetic steel insert arrangement

From Fig. 7.7 it is seen how the magnetic field on the metal surface Hms clearly exceeds
the maximum permitted value Hms,perm of 4000 A/m, permitted form the point of view of
maximum temperature. To eliminate possible hot spots and reduce stray losses designers
use non-magnetic steel in tank covers surrounding the high current bushings [4]. Since
the amagnetic steel is more expensive than magnetic mild steel, the area of the amagnetic
inserts needs to be minimized. Moreover, the power industry is facing a continuous
challenge to keep design and fabrication costs at a minimum, and introducing amagnetic
inserts means an additional cost to the fabrication process. Therefore, the arrangement
of the amagnetic inserts is the second design criteria, where complex shapes must be
avoided.

For the studied case, two possibilities of amagnetic inserts are possible as seen in Fig.
7.9 from the point of view ofHms,perm. The arrangement of amagnetic inserts is determined
by the lowest area and less complicated design, being the shown in Fig. 7.9(a) the best
option with dimensions Ra = 108 mm and da = 105 mm.

From the electrical conductivity of the amagnetic steel and the relative permeability,
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Figure 7.10: Power loss distribution (W/m2) over a three-phase cover plate with best
choice of amagnetic insert from Fig. 7.9(a) due to a 2 kA current.

the length of the electromagnetic wave λ can be calculated from (3.50) being its value
91 mm. Note that for an amagnetic steel plate of thickness d = 5 mm < λ/2, there
exists an internal wave reflection which reduces power losses significantly as mentioned
before. Figure 7.10 shows the stray losses distribution with best choice of amagnetic insert
arrangement from Fig. 7.9(a).

7.2.4 Thermal FEM application

The implemented 3D FE models are built according to the identified parameters to carry
out thermal field computation and contrast the space temperature distribution from both,
the model made of mild steel, and the model with the amagnetic metal insert from
Fig. 7.9(a). Numerical results from the 3D thermal computations are shown in Fig.
7.11. It can be seen from the space temperature distribution in Fig. 7.11(a) how the
temperature clearly exceeds the maximum value taken as permitted Tperm of 140 ◦C [15].
It is in the model made of mild steel where the local maximum temperature reaches up
to 156.3 ◦C. Numerical results from Fig. 7.11(b), for the model with amagnetic insert,
show a significant reduction of the temperature over the entire metallic plate. Here, the
local maximum temperature over the transformer cover plate reaches 42.2 ◦C.

7.2.5 Contribution and conclusions

The engineering too described in this section is presented as an useful to quickly design
amagnetic insert arrangements. The novelty in this tool is that losses are evaluated
in terms of space temperature distribution, which is easy to measure directly in any
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(a)

 

(b)

Figure 7.11: Space temperature distribution over a three-phase transformer cover for a)
mild steel plate and b) plate with amagnetic insert.

structural part of a transformer by the manufacturer. 3D thermal models have been
built to carry out simulations and test the capability of the tool. Thus, the temperature
over a three-phase steel cover plate is computed as practical application. Overheating
hazard clearly appears at commercial rated currents and amagnetic inserts are considered
to reduce the stray losses and control the overheating hazard. Since amagnetic steel
is rather expensive, its arrangement over the transformer cover has to be designed by
minimizing its process cost. Simulation results in terms of space temperature distribution
clearly prove a significant reduction of the temperature over the metallic plate when
considering non-magnetic metal inserts.
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7.3 Transformer Tertiary Stabilizing Winding.

Overheating Hazard on Tank Walls

In the present section, the evaluation of the overheating hazard due to zero sequence
flux on tank walls of power transformers is discussed taking into account the influence of
the Tertiary Stabilizing Winding (TSW). Three-phase three-limb core form transformers
are considered in this work, where the component of the zero sequence flux closes its
path over the tank wall and cover leading to excessive temperatures. However, if a
delta-connected TSW is considered, it can effectively cancel or diminish the zero sequence
flux as it provides an internally closed circuit for zero sequence currents. This work has
been presented in [131] and complements a previous companion paper [132] where the
modeling of transformer for current calculation is discussed in cases of full single-phase
load and single phase-to-ground faults with and without delta-connected TSW. Those
previously calculated zero sequence currents are here the input sources for computing
the zero sequence flux. The methodology presented in Chapter 3 is applied here reduced
to a 2D problem, where the magnetic field distribution is computed from the Reluctance
Network Method (RNM). Stay losses are then computed by applying Turowski’s equation
(3.87). In addition, the problem is solved by using the Finite Element Method (FEM).
Both computational methodologies are described in the next paragraphs and results are
compared.

7.3.1 Background

Zero sequence flux appears in a transformer without neutral conductor when in the
core emerge harmonics of third order, or at asymmetric load in which zero point is
loaded. Extreme cases of such asymmetric load are full single-phase load or single
phase-to-ground fault. At the same time certain unbalanced states may remain
undetected by the transformer protection, subjecting thus the transformer to prolonged
operation with significant zero sequence flux. In the vast majority of three-phase
transformers core form construction is used. A small or medium rated transformer is
usually of three-limb core type. The primary and secondary windings of each phase are
symmetrically arranged around core legs. Under balanced conditions, the currents in
three phases are equal in magnitude, with shift angles of 120 ◦ where the resultant zero
sequence flux is negligible. However, if some unbalance occurs in the terminal voltage the
three-phase fluxes will not be cancelled and it has to return through a path out of the
transformer magnetic core [133]. In the case of a three-phase transformer of three-limb
core type it means that the only way of making a closed circuit for the zero sequence
flux to return is via free-space or through the tank wall, which for power transformers is
usually made of mild steel [134]. The classical solution adopted to avoid the presence of
zero sequence flux is to include a delta-connected Tertiary Stabilizing Winding (TSW)
on the transformer [135]. The delta-connected winding acts as a magnetic screen which
does not transmit almost any equiphase flux inside such closed winding. It means that
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with this winding almost none of equiphase fluxes are coupled. One of the dangerous
consequences of the presence of zero sequence flux is the overheating hazard on structural
parts of the transformer. Tank walls and cover may be heated to an unacceptable
temperature due to additional stray losses. Although the performance of transformers
under unbalanced conditions is well know, and the classical adopted solution to consider
a delta winding or add a tertiary delta winding is assumed, the real impact of the zero
sequence flux is scarcely discussed and relevant information is difficult to find [133].

The modeling of three-winding transformers under asymmetric conditions for
determining the TSW apparent power is presented in [132]. The study presented here
shows methods of estimating the zero sequence flux arising under these unbalanced
conditions as well as assessing the overheating on structural parts of transformers with or
without delta-connected TSW. For such purpose both, the RNM2D 0 software based on
the Reluctance Network Method (RNM) [136] and the two-dimensional Finite Element
Method (2D FEM) are applied [114]. Their results are then introduced in a FE thermal
model in order to compute the temperature rise on the transformer tank. Thus, the
influence of having a delta-connected TSW can be evaluated. A practical application
is presented in the next sections, and results from both computational methods are
compared for their validation.

7.3.2 Zero-sequence flux and stray losses with RNM

Authors presented in [136] a rapid and easy-to-use tool RNM2D 0, based on the RNM
to calculate magnetic field and evaluate the stray losses hazard effects due zero sequence
flux in transformers. The equivalent RNM is one of the simplest and fastest methods of
modelling and computation [137]. The three-dimensional RNM (RNM-3D) was proposed
to compute the leakage magnetic field in three phase transformers by Professor J. Turowski
in 1969 [32], [138]. Such modelling method is extremely competitive in market time
compared with the widely used FEM [120]. Theory and method of modelling and
calculation of losses due to the electromagnetic field are based on Maxwell’s equations and
Poynting’s vector theory. Full solution of Maxwell’s equations with non-linear magnetic
permeability µ(H) and non-sinusoidal excitation is too complicated to be used in regular
engineering computation. However, the RNM permits to model and solve magnetic
circuits, since it offers an easier implementation based on Ohm’s Law for magnetic circuits
(7.1), magnetic Kirchhoff’s Laws for nodes (7.2) and for branches (7.3) [139].

Fi = <iΦi (7.1)

∑n
i=1Φi = 0 (7.2)

∑m
k=1Fk = 0 (7.3)
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where i are the branches and k the nodes of the equivalent network, F is the
magnetomotive force and Φ the magnetic flux through the magnetic element. The basic
reluctances <i, for dielectric regions, are calculated using (7.4), where si and li are the
cross section and length of the mesh element respectively.

<i =
li
µosi

(7.4)

<i = (<re + j<im) · li
d

(7.5)

where <re = a1

√
ωσ/µs and <im = a2

√
ωσ/µs. Meanwhile, solid metal structural

elements (tank wall, cover, beams, etc.) need to be modeled by complex reluctances
due to reaction eddy currents, non linear permeability and skin effect. These reluctances
are calculated by means of (7.5), where d is the depth of the model, µs is the surface
magnetic permeability, ω is the angular frequency, σ the electric conductivity and a1 and
a2 are linearization coefficients for solid steel available in [15].

The magnetomotive forces F of the windings are calculated applying equation (7.6),
assuming the entire ampere-turns at High Voltage (HV) and Low Voltage (LV) windings
are concentrated in the air-gap space.

F =
√

2IHVNHV =
√

2ILVNLV (7.6)

where IHVNHV and ILVNLV are the ampere-turns at HV and LV windings respectively.
For the purpose of this paper, stray losses due to the zero sequence flux in conducting

steel plates are calculated applying the Turowski’s equation (3.87) and applying the
computational methodology as described in Chapter 3 with reliable information on
material properties, linerization coefficients and boundary conditions from Chapter 5.

7.3.3 Zero-sequence flux and stray losses with FEM

Even though the transformer is strictly speaking a 3D geometry, the 2D solution can be
considered as a good first approach in many cases. Therefore, considering the current
density vector J is in the z−direction, the 2D diffusion problem can be formulated in
terms of the magnetic vector potential A by the system of equations [140]

1

µ

∂2A

∂x2
+

1

µ

∂2A

∂y2
= −J0 + jωσA (7.7)

J = −J0 + jωσA (7.8)
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Model Winding IU(A) IV(A) IW(A) I0(A)

With TSW
HV 84.74 −29.99 −30.69 8.02
LV −1033.87 0 0 −344.62
TSW 239.28 239.28 239.28 239.28

Without TSW
HV 103.51 −10.82 −11.51 27.06
LV −1029.69 0 0 −343.23

Table 7.1: Winding currents from single-phase load condition on the LV side.

where J0 is the source current. The quasi-poisson equation (7.7) defines the
electromagnetic field problem for the linear or the non linear field problem, since
reluctivity can either be constant or function of Az.

Eddy currents are calculated in each element from the magnetic vector potential A in
A/m2 as

Jeddy = −jωσA (7.9)

Stray losses are then calculated from the eddy currents as Joule effect

Pσ =

∫∫
s

1

σ
J2
eddy dx dy (7.10)

where s is the area of the evaluated region. In order to study the zero sequence flux in
tank walls of three-limb core form transformers, which are usually made of mild steel the
skin depth penetration δ (3.49), more specifically its non-linear form given in δnl (3.112),
must be taken into account. For mild steel at 50 Hz, the skin depth is approximately
equal to 1 mm. Being so relatively thin, it must be taken into account as nearly all the
leakage flux produced by the windings, flows through this very small skin depth in the
tank wall [141].

7.3.4 Transformer model

For the computation a 45 MVA YNyn0 (d1) transformer of 224.25 kV / 24.9 kV / 13.8 kV
is considered. The High Voltage (HV) and Low Voltage (LV) windings, are both Wye
connected with neutral point accessible. The HV winding is connected to the local
grid, while the LV is connected to the consumer load. It has a delta-connected Tertiary
Stabilizing Winding (TSW), not connected to any load, with the purpose to allow the
flow of the zero sequence current during fault conditions. Shunts were also considered in
the simulation.

The selected transformer is modeled in order to compute the zero sequence flux and
its consequences in terms of the overheating hazard in tank walls. The modeling of
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Figure 7.12: Modeled transformer geometry for the zero-sequence flux and tank walls
overheating computation.

three-winding transformers and winding current calculation in the case of asymmetrical
loads are described in [132]. Thus, a single-phase load is connected at the secondary
side, and the zero sequence currents are calculated [142], being those currents the input
field sources. The calculated unbalanced currents for each phase (U, V and W) and zero
sequence currents I0 are shown in Table 7.1. Then, the zero sequence flux is calculated for
the considered unbalanced conditions. It is done with the two proposed computational
methods RNM and FEM described in the previous sections, which permits to validate the
results. On the other hand, the computation of temperature due to zero sequence flux is
performed using the FEM as described in Section 3.2. Note that having the zero-sequence
currents as input to the magnetic and thermal studies a one-phase model is assumed to be
representative for the zero sequence flux computation. Figure 7.12 shows the transformer
geometry to be modeled. Since the purpose of the practical application is to find reasons
to justify the inclusion of the TSW on Yy-connected three-limb transformers, the analysis
is performed with and without delta-connected TSW.

7.3.5 Magnetic field and power losses

In this section the magnetic field and power losses arising in the transformer tank
walls under unbalanced load are calculated from the two computational methodologies
proposed (RNM and FEM). Tank Wall 4 is the closest wall to the windings as shown
in Fig. 7.12 and therefore the wall withstanding the higher overheating hazard. In Fig.
7.13(a) the magnetic field strength Hms in A/m along the inner surface of tank Wall 4
computed from RNM is compared with the results obtained from FEM computation.
Also there, the magnetic fields computed with and without TSW are compared. It
can be seen how the magnetic field significantly reduces its maximum value with the
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Figure 7.13: Electromagnetic analysis due to zero-sequence flux with and without TSW
on a vertical tank Wall 4 from FEM and RNM a) Magnetic field distribution on the metal
surface and b) Power loss density.

Model with TSW Model without TSW

RNM 1231 Watts 6507 Watts
FEM 1082 Watts 5503 Watts

Table 7.2: Total power losses on tank Wall 4 due to zero-sequence flux.

actuation of the TSW. A detail of the magnetic field strength penetration on tank
wall without delta-connected TSW is shown in Fig. 7.14, obtained using the FEM
commercial software package Flux2D [114]. It can be seen how the magnetic field
concentrates on the penetration depth region according to δ (3.49). To account for this
phenomenon, the size of the finite elements in the mesh is a key question to accurately
compute the field and the stray losses. The small thickness of the tank wall compared
with its other dimensions leads to a great number of elements, and therefore numerical
memory problems arise. In Fig. 7.13(b) stray losses distribution in the tank wall
due to the zero sequence flux computed from RNM are plotted along Wall 4. It is
compared with the results computed with FEM. Also in Fig. 7.13(b), the stray losses
distribution with and without actuation of TSW are compared. Total stray losses on
tank Wall 4 are collected in Table 7.2 for the two computational methods, computed
on a model of 566 mm depth, which is the core diameter. Note that the presence of
TSW greatly influences the magnetic field and stray losses in the transformer tank
walls, as it provides an internally closed circuit for zero sequence currents. Therefore,
above results prove the effectiveness of TSWs to cancel or diminish the zero sequence flux.
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Figure 7.14: Zoom-in of the magnetic field distribution on vertical tank wall computed
from FEM.

7.3.6 Tank wall overheating

The maximum value of the magnetic field strength at the surface Hms is responsible
for the loss density and therefore sources for the local heating. As already mentioned,
prolonged operation of a transformer with significant zero sequence flux can result in
potentially harmful heating of metallic structural parts external to the core. To compute
the tank wall overheating, the power losses are computed by means of Turowski’s
equation (3.87) from RNM results and then they are introduced in the thermal FE
model. This methodology has been already applied by the authors in transformer covers
and tank walls with accuracy, as from the knowledge of the input parameters determined
from Chapter 5.

On the other hand, Joule losses (7.10) are computed from FEM and used as heat
sources in the thermal FEM model. The ambient temperature is kept at 21 ◦C. Resultant
temperature distribution from the two proposed computational methodologies (RNM
and FEM) along tank Wall 4 are compared in Fig. 7.15. It is proven that the computed
temperature distribution from both methodologies show good agreement with each other.

It is important to highlight the required effort to implement the electromagnetic
FEM model in order to achieve accurate results. Thus, if the skin depth penetration is
not taken into account in the model mesh, the computed field, and in consequence, the
computed stray loss distribution and temperature values would be far from reality. Such
effort is not needed when the temperature is computed from the RNM results. Stray
losses computed from the RNM are introduced in the skin depth penetration region
in the thermal model, given such accurate results when computing the steady state
temperature as those seen in Fig. 7.15.

Hot spots appear when Hms exceeds a certain limit value of Hms,perm, permitted
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Figure 7.15: Temperature distribution over tank Wall 4 due to the zero-sequence flux
with and without TSW actuation.

Model with TSW Model without TSW

RNM 83.86 ◦C 270.03 ◦C
FEM (1−phase model) 78.43 ◦C 249.91 ◦C
FEM (3−phase model) 69.97 ◦C 255.56 ◦C

Table 7.3: Hottest spot temperature on tank Wall 4 due to zero-sequence flux for each of
the considered computational models.

from the point of view of permitted temperature Tperm. From [139] and [15] the
permissible value of the temperature in tank walls with convection at both sides is 110 ◦C
corresponding with a Hms,perm value of 6000 A/m, which is clearly exceeded in the model
without actuation of the TSW, as seen from Fig. 7.13(a). In the studied transformer, due
to the presence of shunts a remarkable non-uniformity of power loss distribution occurs
and heat flows out from hot to colder parts. This fact would increase the permissible
value of magnetic field, as seen for the model with TSW.
Figure 7.16(a) shows the space temperature distribution from FEM computation with

and without actuation of the TSW. It can be seen how the temperature clearly exceeds
the maximum value taken as permitted Tperm of 110 ◦C [32] without TSW in Fig 7.16(b).
There, the temperature reaches a maximum of 249.91 ◦C. The temperature computed
with the TSW is reduced to 78.43 ◦C, as seen in Fig. 7.16(a) which is within the
maximum permitted values.

Figure 7.17 shows the space temperature distribution for a three-phase model of the
same transformer. The input currents in this model are the three-phase unbalanced
currents resulting from single-phase load condition shown in Table 7.1. The resulting
temperature distribution pattern is compared with the representative one-phase model
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(a)

 

(b)

Figure 7.16: Temperature distribution due to zero-sequence flux from FEM computation
a) with connected TSW and b) without TSW.

 

 

 

Figure 7.17: Temperature distribution due to zero-sequence flux without connected TSW
from FEM computation, three-phase model.

for zero sequence currents analysis. Also, results show good agreement with each other,
validating therefore the one-phase model with zero sequence currents as data input.
Hottest spot temperature results are compared in Table 7.3 for RNM and the one-phase
and three-phase FE models, showing good concordance with each other. Figures 7.16(a)
to 7.17 are obtained using the FEM commercial software package Flux2D [114].
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7.3.7 Contribution and conclusions

The zero sequence flux and its consequences of overheating hazard in a three-limb core
form power transformer have been investigated. Unbalanced faults and load conditions in
Yy-connected transformers might result in significant zero sequence flux, closing its path
over the tank wall. However, if a delta-connected TSW is considered, it can effectively
cancel or diminish the zero sequence flux as it provides an internally closed circuit for
zero sequence currents.

In the study presented here zero sequence flux and stray losses are evaluated under
single-phase load condition, applying both RNM and FEM methodologies, with and
without TSW. The overheating on the transformer structural parts is calculated by means
of steady state FEM thermal computations.

Results from the applied methodologies are compared showing good agreement in
terms of magnetic field, as well as power losses and temperature distribution. However,
the RNM method has been validated as a simpler tool achieving accurate results with less
computational effort.
From results of the study case without actuation of the TSW, one can highlight that stray
losses values generated on the tank wall and the hottest spot temperatures are of great
magnitude, heating to unacceptable values the transformer tank. On the other hand,
results considering a delta-connected TSW show that zero sequence flux circulating on
the tank under unbalanced conditions is much lowered, and therefore the hottest spot
temperature decreases to permitted values.
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Chapter 8

Conclusions and Future Work

A 3D methodology has been proposed as a practical tool to evaluate overheating hazard on
transformer structural parts taking into account electromagnetic skin depth penetration.
Stray losses are computed by means of an electromagnetic analytical approach based on
Poynting’s Vector. A thermal FE analysis, where calculated losses are introduced as
heat sources, computes the space temperature distribution. The presented computational
methodology has been applied to several study cases, where the main contributions and
conclusions are given in the following sections, including also future lines of research.

8.1 Contribution and Conclusions

Computational Methodology

This research work pays special attention to the particular case of transformer cover plates
being more representative. Then the computational methodology is applied to tank walls
and other structural parts.

For the computation of the temperature on transformer covers, there arises the need
to develop accurate and reliable methods to characterize the induced thermal field taking
into account the non-linear magnetic material characteristic.

A non-linear penetration depth magneto-thermal model and its physical aspects are
rigorously described and used for the magnetic field computation providing thus more
insight of the problem performance when taking into account saturation.

The described model allows to analyze the electromagnetic behavior in detail from
weak to strong fields over steel transformer cover plates.

Particularly, the novelty of the model stressed in this dissertation lies in that it clearly
defines the non-linear penetration depth of electromagnetic field inside metal, which is
crucial in the FE thermal model to set the volume regions where stray losses are introduced
as heat sources.
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Temperature Measurements

In order to evaluate the overheating hazard due to high current leads an experimental
work is described. Several tests are carried out, where steel plates used in transformer
structural parts are heated by electromagnetic induction. The temperature is measured
over metal surface by means of several sensors, and also by means of thermal imaging.

Tangential and normal field excitation are applied to the steel plates, i.e. the case of
transformer cover plate and the tank wall.

Several design parameters are taken into account as e.g. number of conductors and
distance between them, distance to the tank wall, amagnetic inserts, or the plate thickness.

Temperature measurements serve on one hand, to validate the temperature results, but
on the other hand to calibrate the numerical models.

Calibration Process

A calibration process of computational models is highlighted in the methodology proposed
in this dissertation. This process ensures the reliability of results by identifying material
properties and boundary condition data which might be inaccurate as they are usually
taken from characteristic sheets or from the literature. The calibration process also avoids
uncertainties due to that the numerical results also depend on the kind of mathematical
solver used for the computation. Thus, a parameter identification technique is described
based on multiobjective optimization algorithms, where sensitivity to measurement error
is taken into account.

The analytical-numerical approach does provide models with low computational effort
and runtime so that the optimization process is successfully implemented.

A set of Pareto-optimal solutions is obtained with Goal Attainment Method (GATT)
and Non-dominated Sorting Genetic Algorithm (NSGA-II) for the sake of comparison.
Results from GATT and NSGA-II are compared showing good agreement along the
tradeoff surface.

The solution from SO optimization is also compared to MO solution stressing the
consistency of results, as SO optimization represents a particular solution from the front.

From the MO optimization can be easily obtained the set of parameters chosen for
computation according to desired criteria on accuracy and sensitivity to measurement
error. The parameter identification taking into account sensitivity to measurement error
yields a significant improvement on the accuracy of obtained results.

Experimental Validation

The validation of the computational methodology focus firstly on transformer covers,
where induced heating is due to tangential field excitation. Once the identification of the
adequate input parameters is done, the presented methodology is applicable to any load
condition and any number of conductors.

Temperature results computed from non-linear penetration depth model are compared
with measurements for several current values, for one current carrying conductor and
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single phase currents according to the performed tests. Good agreement between
simulation results and experiments has been achieved, which demonstrate the crucial
influence of the non-linear penetration depth on the temperature computation.

The results are validated experimentally by comparing 3D numerical results with
measurements from thermal images. It confirms that the novelty of the present
dissertation of computing the temperature to localize the hot spots on transformer covers
represents one step ahead compared with those proposals existing in the literature, where
results are available only in terms of power losses.

Moreover, the accuracy on the temperature distribution for the wide range studied
cases indirectly validates the power loss computation.

The results illustrate how overheating clearly appears at commercial rated currents in
single-phase and three-phase transformer flat tank cover plates.

Amagnetic Inserts

Means of preventing overheating hazard on transformer tank covers are evaluated,
such considering amagnetic inserts in the metal plates, where the influence of metal
thickness must be taken into account and screening coefficients must be introduced in
the computational methodology.

The calibration process has been successfully implemented to identify unknown
material properties. In particular, stainless steel has been found to be slightly magnetic.
Model-calculated values are compared with measurements showing that good agreement
is achieved for one conductor and single-phase currents through the cover plate.

A practical tool for the design of amagnetic inserts in three-phase flat transformer
covers is also presented to be included into the computational methodology, so that
cost-effective designs might be achieved.

Tank wall

The proposed 3D methodology is extended to the case of tank wall where the problem
might be solved by means of 2D models. FE thermal simulations are compared with
measurements validating the obtained results at one current carrying conductor and
single-phase currents.

It has been proven that the overheating due to normal field excitation is not as
hazardous as the overheating due to tangential field at tested current values.

A practical application is presented, where the tank wall overheating due to the
presence of zero-sequence flux is evaluated. The influence of having connected a Tertiary
Stabilizing Winding (TSW) is also taken into account in three-phase three-column
transformers. Results show that overheating due to zero-sequence flux clearly arises if
no TSW is connected.
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Complex 3D Structures

The proposed computational methodology is applied to complex 3D structures such are
e.g. bushing turrets. Measurements are compared with numerical results, for round and
square structure shapes and different materials showing good agreement with each other.

A three-phase system with bushing turrets and flat base is included, considering
various combinations of mild steel with stainless steel.

It represents the capability of the models for being implemented in the design stage
of large power transformers, with drastic reduction of computation time due to the
introduction of the electromagnetic analytical model.

8.2 Future Work

One of the main components of power transformers besides the core and the winding is
the tank and therefore its effective and reliable design is crucial. The work presented
in this dissertation represents a significant contribution in this area, however it must be
continued. Thus, future lines of research would include:

� Further investigation on electromagnetic screening coefficients and screening
effectiveness. Thickness of metal plates and screens or double-layer walls combining
different materials, e.g. including copper screen, and their experimental testing
must be considered.

� Development of models including several configurations of conductors arrangement
and phase angles, creating complex problems which should be solved as rapidly as
possible.

� Testing different cooling conditions such as oil or forced air convection.

� Testing the implemented models and the proposed computational methodology in
real transformers, where the influence of several sources of field might be present.

� Implementation of cost-effective and optimum shape design of structural
components. It requires the application of optimization algorithms taking into
account design and geometric parameters and possibly a cost function. Including
e.g. to automate the design of amagnetic inserts, presented in Chapter 7, considering
maximum permitted temperature and total loss values together with material cost.

As first design approach the deep knowledge and understanding of the phenomena
occurring in the structure is essential, obtained from parametric investigation and
validated with tests. However, this research must be extended in several directions to
guarantee the complete development of the presented computational methodology and
tools.
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Appendix A

Field Calculation

A.1 Biot Savart Law applied to infinite

current-carrying conductor

In calculating the magnetic fields due to electric currents, it is sometimes easier to
use Biot-Savart’s law, which allows to calculate the magnetic field near a long straight
current-carrying wire located along the z-axis with current moving in the positive
z-direction. Considering a point (x, y) at a distance D from a current element, as seen
from Fig. A.1, the magnetic field is can be calculated from A.1

dH

z

x
φ1

φ

φ2
ϕ

dz = dl

z

r

D

i

(x, y)

Figure A.1: Biot-Savart law applied to calculate the magnetic field due to an infinite
current-carrying conductor.
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dH =
1

4π

i dl× ur
D2

sinϕ

=
1

4π

i dl

D2
cosφuθ

(A.1)

where dl is an element of length along the path taken by the current i and r is the
position vector of the point at which H is to be calculated and ur and uθ are the unit
vectors of the cylindrical coordinates of the considered point (x, y). Thus, equation A.1 can
be solved for the magnetic field at any space-point due to a long straight current-carrying
wire. Having from A.1 that

z = r tanφ

dz

dφ
=

r

cos 2φ
=

r

r2/D2
=
D2

r

(A.2)

yields to

dH =
1

4π

i

r
cosφ dφ (A.3)

Integrating over an entire current carrying wire, from φ1 to φ2, the magnetic field is
calculated as

H =
1

4π

i

r

∫ φ2

φ1

cosφ dφ

=
1

4π

i

r
(sinφ2 − sinφ1)

(A.4)

In the case of considering a current-carrying conductor of infinite length, the angle φ
would vary from φ1 = −90◦ to φ2 = 90◦, and the resulting magnetic field is

H =
i

2πr
(A.5)

Equation A.5 can be therefore applied to calculate the magnetic field distribution on
transformer covers, assuming conductors on infinite length, and being thus the magnetic
field purely tangential to the metal surface.
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Temperature Measurement

B.1 Test equipment technical data

� Variable Current Source

Majo System Integrator - QE01

Variable current 5000 A
Project number 10MJ047ELE01
Series number 455
Date 11/2010

� Three-phase Power Quality Analyzer

Power Quality and Energy Analyzer Fluke 435

Voltage inputs

Number of inputs 4 (3 phases+neutral) dc-coupled
Maximum input voltage 1000 Vrms
Maximum voltage range 50 V to 5000 V
Maximum peak measurement voltage 6 kV
Input Impedance 4 MΩ // 5 pF

Current inputs

Number of inputs 4 (3 phases+neutral) dc-coupled
Range 0.1 Arms to 3000 Arms
Input Impedance 50 kΩ
Nominal Frequency 40 Hz to 70 Hz
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� Thermal Imaging Camera

Fluke P3 Series Thermal Imager

Model Ti32
Measurable range −20 ◦C to 600 ◦C
IR Resolution 320× 240
Measurement accuracy ±2 ◦C or 2%

(at 25 ◦C nominal, whichever is greater)

� Pt100 RTD Sensors 3-wire construction

RTD sensors using a 3-wire construction as seen in Fig. B.1, provide accurate
temperature measurement. These are the most commonly used in industrial
applications where the third wire provides a method for removing the average lead
wire resistance from the sensor measurement. The 3-wire circuit works by measuring
the resistance between terminals A and B (RAB), and subtracting the resistance
between B and b (RBb), which leaves just the resistance of the RTD sensor RRTD

B.1. This method assumes that wires 1, 2, and 3 are all the same resistance.

RAB −RBb = (RA +RRTD +RB)− (RB +Rb) = RRTD (B.1)

RRTD

RA

Rb

RB

A

b

B

Figure B.1: RTD 3-wire construction.
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� Data Acquisition System

YOKOGAWA DXAdvanced

Model DQStation DX1000
Number of inputs 12
Input type Resistance Temperature Detector (RTD)
Measurable range −200 ◦C to 600 ◦C
Measuring current 1 mA (Pt100)
Measurement accuracy ±(0.15% of rdg∗ + 0.3 ◦C) (Pt100)
∗rdg is the reading temperature value

DQStation wiring for temperature measurement

The input terminal block from the data acquisition system can be seen in Fig.
B.2(a) [93]. Provided that the used Pt100 sensors are 3-wire construction, they are
connected for measurement as seen in Fig. B.2(b).

(a) Input terminal block. (b) Wiring for RTD input.

Figure B.2: DQStation wiring for temperature measurement.
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B.2 Measurement error

A sensitivity analysis is introduced in the parameter optimization problem in order to
take into account the measurement error, as seen in Section 5.5. Investigation on the
accuracy of the temperature measurement is to be investigated in order to perform a
more reliable sensitivity analysis. The measurement error introduced from every element
present in the measurements is estimated in the next sections.

RTD sensor (Pt100)

Resistance Temperature Detectors (RTDs) are temperature sensors that contain a resistor
that changes resistance value as its temperature changes. They have been used for many
years to measure temperature in laboratory and industrial processes, and have developed
a reputation for accuracy, repeatability, and stability. The IEC standard 60751−2008 for
industrial platinum resistance thermometers and platinum temperature sensors [90] sets
two tolerance classes for the accuracy of RTDs.

Class A: ∆T = ±(0.30 + 0.005 · |T |)

Class B: ∆T = ±(0.30 + 0.005 · |T |)
(B.2)

where |T | is the absolute temperature in ◦C. Class applies to temperatures from −200 ◦C
to 650 ◦C, and only for RTDs with three- or four-wire configurations (see Appendix
B.1). Class B covers the entire range from −200◦C to 850◦C. Class B is considered
for being widely used in industrial applications, thus the highest temperature measured
corresponding to a 2500 A test in sensor Ts1 is 174.7◦C, the accuracy is

∆T = ±1.17 ◦C (B.3)

and the measurement error due to the RTD sensor, taking Ts1 as reference is

εPt100 = 0.67 % (B.4)

Data Acquisition Equipment

The error introduced from the acquisition data equipment [93] is given for and integration
time greater than 16.7 ms from

εAcqData = ±0.15 % of rdg + 0.3 ◦C (B.5)

where rdg is the reading temperature, in our case taking temperature of sensor Ts1 as
reference for the error estimation rdg = 174.7 ◦C. The integration time used is in auto
mode is 16.7 ms or more, and thus
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εAcqData = ±0.56 ◦C = 0.32 % (B.6)

In addition the is an error of 0.1 ◦C introduced by the resolution of digital display, resulting

εDisplay = 0.06 % (B.7)

Measurement Ripple

Due to the influence e.g. of the sensor pressure or other factors, the temperature
measurement has some ripple even at steady state. This deviation on the measurement
itself is quantified from a 2500 A test measurement and temperature sensor Ts1. When
steady state is reached, the minimum temperature measured for Ts1 is 173.3 ◦C and the
maximum value 174.7 ◦C, yielding thus an error introduced in the measurement of

εRipple = 0.8 % (B.8)

Sensor Position

To place the temperature sensor on the exact desired position is extremely difficult,
introducing thus an error con the comparison measured-computed values. This error
is quantified from FE thermal analysis on a 2500 A simulation and temperature sensor
Ts1. The sensor is positioned at a distance of 30 mm from the steel plate center, and the
position error is estimated to be of ±30 mm. The computed temperature of sensor Ts1 at
the exact position is 170.47 ◦C and at a distance of 33 mm from the steel plate center is
169.19 ◦C, yielding thus an error introduced in the measurement of

εPosition = 0.75 % (B.9)

Source Current

During tests, due to the heating of cables and conductors the resistivity of such conductors
varies and so does the current. Although the source current is being controlled during
experiments, it is unavoidable that some error is introduced due to the variation of the
source current. This error is quantified from simulation, e.g. for a 2500 A test, a ±0.5 % of
error in the source current is estimated. Thus, temperature at sensor Ts1 is calculated for
2500 A and 2512.5 A tests, being 170.47 ◦C and 171.47 ◦C respectively, yielding an error
in the output temperature of

εCurrent = 0.58 % (B.10)
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Numerical Model

The accuracy of the numerical model is difficult to quantify and though this is not a
measurement error, it is involved on the whole methodology of parameter identification,
therefore it has to be taken into account. Due to e.g. the FE model mesh, or to the
skin depth penetration −volume regions where the power losses are introduced− or other
factors, the numerical model does introduce some error on the output temperature. It is
difficult to account for this error, but it is estimated as 1 ◦C, yielding an error of

εModel ≈ 0.58 % (B.11)
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Nomenclature

A Magnetic vector potential
A1, A2 Coefficients for analytical approximation of BH curve
Cp Heat capacity
Ar Reduced magnetic vector potential
B Magnetic flux density
B0 Flux density saturation value
D Electric flux density
E Electric field
F Goal objective function
H Magnetic field
Hk Magnetic field knee value of BH curve
I Current
J Current density
L Length
N Winding turns
Ni Shape function
M Current image coefficient
P Power losses, Stray losses
Pv Hysteresis losses
Pσ Joule losses
R Resistance, radius
S Poynting’s Vector
S Surface
T Electric vector potential
T Period, Temperature
Ta Room temperature
Zs Surface Impedance
V Electric scalar potential, Volume
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a Distance between conductors, distance to tank wall
ap Linearization coefficient for non-linear permeability on active power losses
aq Linearization coefficient for non-linear permeability on reactive power losses
b Distance from conductor to x-axis
c1, c2 Distance to tank wall, coefficients for analytical approximation of BH curve
d Plate thickness
di Euclidean distance
f Frequency, weighting function, objective function
f1 Accuracy
f2 Sensitivity
h Magnetic field instantaneous value, height
hc Convective heat exchange coefficient
i Current instantaneous value
j Imaginary number,

√
−1

k Attenuation constant in solid metal, constant coefficient for weighting factor
ks Coefficient of wall finite dimensions
kt Thermal conductivity
n Normal direction
nf Number of objective functions
np Population size
ns Number of sensors
nQ Image coefficient
nv Number of variables
p Active power density, loss density
pσ Joule loss density
qk Heat flux density
q Reactive power density
t Time
we Stored electric energy
wm Stored magnetic energy
x Design variable
x, y, z Components of Cartesian coordinate system
xp Stray losses correction factor

F Magnetomotive force
Γ Propagation constant
Ω Domain
Φ Magnetic scalar potential, Magnetic flux
< Magnetic reluctance
<e Complex real operator
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α Attenuation constant
β Phase constant
δ Field penetration depth
ε Dielectric permitivity, relative error
ε Radiation heat exchange coefficient or emissivity
λ Wave length, attain factor
µ Magnetic permeability
σ Electric conductivity
σr Stephan-Boltzmann constant
θ Position angle of cylindrical coordinate system
ω Angular frequency, search directions
ρ Electric charge density
≺n Crowded comparison operator
ζ Screening coefficient

Acronyms

3D Three-dimensional
2D Two-dimensional
EMF Electromotive Force
BEM Boundary Element Method
FDM Finite Difference Method
FE(M) Finite Element (Method)
GATT Goal Attainment Method
HD Highest Deviation
HV High Voltage
IBC Impedance Boundary Condition
IE Initial Estimation
IEM Integral Equation Method
IR Infrared
LV Low Voltage
MD Mean Deviation
MO Multi-Objective
NSGA-II Non-dominated Sorting Genetic Algorithm-II
PD Penetration Depth
RNM Reluctance Network Method
RRN Reluctance Resistance Network
RTD Resistance Temperature Detector
SI Surface Impedance
SO Single-Objective
TSW Tertiary Stabilizing Winding
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Subscripts

0 Vacuum, initial estimate, zero-sequence
a amagnetic
abs Absolute
av Average
e Element
h Hole
i, j, k Nodal values
im Imaginary part
L Linear
l Lower
m Maximum
max Maximum
nl Non-linear
perm Permitted value
r Relative, radius, radial component
re Real part
ref Reference value
rms Root mean square
s Surface, sensor
subs Substitution
sup Support
Sat Saturation
U , V , W Components of a three-phase system
u Upper
v Volume
θ Tangential component
0 Vacuum, initial estimate
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